Фазы мейоза
И, разумеется, фазы мейоза отличаются от аналогичных, у митоза. Профаза в мейозе в разы длиннее, так как в ней происходит коньюгация – соединение гомологичных хромосом и обмен генетической информацией. В анафазе центромеры не делятся. Интерфаза очень короткая и ДНК в ней не синтезируется. Клетки, образованные в результате двух мейотических делений содержат одинарный набор хромосом. И только при слиянии двух клеток: материнской и отцовской, восстанавливается диплоидность. Также помимо всего прочего мейоз протекает в два этапа, известные как мейоз І и мейоз ІІ.
Опять-таки наглядное сравнение митоза и мейоза и их фаз вы можете увидеть на картинке.
Жизненный цикл клетки
В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток, которому мы посвятим два занятия.
Жизненный цикл клетки — период существования клетки от момента её образования в результате деления материнской клетки до её собственного деления или гибели.
Митотический цикл состоит из двух последовательных стадий.
Непосредственно перед делением клетка проходит интерфазу, или стадию покоя, функциональное значение которой в том, что во время неё синтезируется ДНК. Длительность стадии покоя составляет 90% и более в течение всего цикла клеточного деления.
Интерфаза — это период активной жизнедеятельности клетки, который условно можно разделить на три периода.
Период | Характеристика |
Пресинтетический, или постмитотический | Обозначается G1 или q1. Продолжительность этого периода 10 часов и более. Осуществляется сразу после деления клетки. Содержание генетического набора в клетке – 2n2c, диплоидный набор хромосом, каждая из которых имеет одну хроматиду. Здесь происходит восстановление структуры интерфазной клетки: окончательно формируется ядрышко; масса клетки увеличивается за счёт синтеза белка; происходит образование ферментов, участвующих в катализе реакции репликации; синтезируется белок; увеличивается количество различных видов рибонуклеиновой кислоты (РНК). Хромосомы представлены тонкими хроматиновыми нитями, каждая нить состоит из одной хромосомы. |
Синтетический | Обозначается как S. Продолжительность 6 – 10 часов. В данном периоде происходит удвоение (репликация, дупликация) ДНК, хромосомы становятся двухроматидными. Это необходимо для последующего митотического деления клетки. Также, на этом этапе продолжается рост клетки, начавшийся в пресинтетичском периоде, синтезируется РНК, белки – гистоны, в последующем соединяющиеся с ДНК. Генетический материал – 2n4c. |
Пост синтетический или премитотический | Обозначение: G2 (q2).Содержание генетической информации – 2n4c. В этом периоде осуществляется подготовка к митозу, продолжается он 2 – 5 часов. Происходит усиленное образование энергии АТФ; синтезируются белки, которые необходимы для обеспечения процесса деления и образования веретена деления; начинается спирализация хромосом; значительно увеличивается объём ядра, а, следовательно, и масса цитоплазмы. Далее клетка непосредственно переходит к стадии митоза. |
Репликация — это процесс удвоения молекул ДНК.
Репликация ДНК
Для бактерий и простейших деление клетки является основным способом размножения, поэтому практически все клетки не погибают после интерфазы, а делятся на две дочерние клетки, давая, таким образом, жизнь новым организмам.
Клетки многоклеточных организмов не обладают способностью к бесконечному делению.
ДНК клеток содержат специальные «гены гибели», которые в определённый момент активируются, вырабатывая в клетке особые белки, приводящие к её физиологической смерти.
Апоптоз — это генетически обусловленная гибель клеток.
Митоз
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
Профаза – 2n4c
- Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры – хромосомы – происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
- Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
- Центриоли перемещаются к полюсам клетки, образуются центры веретена деления.
Метафаза – 2n4c
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Анафаза – 4n4c
Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним – дочерние хромосомы) к полюсам клетки.
Телофаза – 2n2c
В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.
- Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
- Появляется ядерная оболочка, формируется ядро
- Разрушаются нити веретена деления.
В телофазе происходит деление цитоплазмы – цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений – формированием плотной клеточной стенки (которая растет изнутри кнаружи).
Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид – 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.
Биологическое значение митоза очень существенно:
- В результате митоза образуются дочерние клетки – генетические копии (клоны) материнской.
- Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
- Универсальность митоза служит очередным доказательством единства всего органического мира.
Биологическое значение мейоза
- Мейоз дает возможность образовывать гаметы у животных и споры у большинства растений и грибов.
- Результатом мейоза является уменьшение количества хромосом вдвое. Благодаря этому, сохраняется постоянство числа хромосом в поколениях.
- Во время мейоза происходит перетасовка генов — кроссинговер. Данная перетасовка — основа комбинативной изменчивости (о которой вы можете почитать в статье «Закономерности изменчивости») и разнообразия живого мира.
Почему в половых клетках только гаплоидный набор хромосом?Только представьте, если бы этот процесс проходил иначе, тогда набор хромосом из поколения в поколение увеличивался бы вдвое. Например, у человека при оплодотворении сперматозоид, имеющий 46 хромосом, сливался бы с яйцеклеткой с таким же набором. Зародыш получил бы 92 хромосомы, а это только первое поколение! С генетической точки зрения это привело бы к накоплению мутаций, фенотипических изменений, но, скорее всего, даже к летальному исходу. |
Стадии митоза и мейоза
Клетки проводят около 90% своего существования в стадии, известной как интерфазный . Поскольку клетки функционируют более эффективно и надежно, когда они маленькие, большинство клеток выполняют регулярные метаболические задачи, делятся или умирают, а не просто увеличиваются в объеме в интерфазе. Клетки «готовятся» к делению путем репликации ДНК и дублирования центриолей на основе белка. Когда начинается деление клеток, клетки вступают в митотическую или мейотическую фазы.
При митозе конечным продуктом являются две клетки: исходная родительская клетка и новая, генетически идентичная дочерняя клетка. Мейоз является более сложным и проходит через дополнительные фазы для создания четырех генетически различных гаплоидных клеток, которые затем могут объединиться и сформировать новое генетически разнообразное диплоидное потомство.
Что такое митоз и мейоз?
Эти два термина соответствуют двум способам размножения эукариотических клеток. Прежде чем узнать о различиях между митозом и мейозом, полезно узнать каждый процесс более подробно.
Митоз
Также известный как кариокинез, он встречается у одноклеточных и многоклеточных существ. Благодаря этому процессу многоклеточные организмы – растения, животные, грибы и др. – гарантируют их выживание, так как клетки их тканей поддерживаются и развиваются за счет репликации собственных клеток.
Всего митоз состоит из четырех фаз:
- Профаза : генетический материал начинает конденсироваться и формировать длинные тонкие нити, формируя так называемое митотическое веретено.
- Метафаза : оболочка клеточного ядра исчезает, высвобождая генетический материал.
- Анафаза : хромосомы мигрируют к противоположным полюсам клетки.
- Телофаза : ядерная оболочка начинает воссоздаваться на каждом полюсе, оставляя две идентичные клетки, когда цитоплазма делится.
Мейоз
Мейоз – это процесс, обеспечивающий генетическое разнообразие между особями одного и того же вида . Это гораздо более сложный цикл деления, потому что благодаря ему образуются гаметы. Генерируются два цикла деления с соответствующими фазами.
Первый из них, мейоз I, включает следующие этапы и приводит к образованию двух диплоидных клеток с одинаковым генетическим материалом:
- Профаза I : гомологичные хромосомы обмениваются генетическим материалом путем кроссинговера.
- Метафаза I : образовавшиеся хромосомы случайным образом располагаются на экваторе клетки.
- Анафаза I : гомологи расходятся и движутся к полюсам клетки.
- Телофаза I : они начинают окружаться ядерной оболочкой.
Со своей стороны, мейоз II имеет свои фазы:
- Профаза II : хроматин снова конденсируется, и ядерная оболочка исчезает.
- Метафаза II : хромосомы, состоящие из двух хроматид, расположены на экваторе клетки.
- Анафаза II : сестринские хроматиды расходятся и движутся к полюсам клетки.
- Телофаза II : образовавшиеся хромосомы, теперь с одной хроматидой, сгруппированы на полюсах, и ядерная оболочка вокруг них начинает реорганизовываться.
В конце этого второго периода деления ядра образуются четыре гаплоидные клетки, каждая из которых содержит половину генетического материала.
Различия в назначении
Хотя оба типа клеточного деления встречаются у многих животных, растений и грибов, митоз встречается чаще, чем мейоз, и имеет более широкий спектр функций. Митоз отвечает не только за бесполое размножение одноклеточных организмов, но и за то, что обеспечивает рост и восстановление клеток в многоклеточных организмах, таких как человек. В митозе клетка делает точный клон себя. Этот процесс является причиной роста детей во взрослых, заживления порезов и ушибов, и даже отрастания кожи, конечностей и придатков у животных, таких как гекконы и ящерицы.
Мейоз является более специфическим типом клеточного деления (в частности, половых клеток), в результате которого образуются гаметы, или яйца, или сперма, которые содержат половину хромосом, обнаруженных в родительской клетке. В отличие от митоза с его многочисленными функциями, мейоз имеет узкую, но важную цель: содействие половому размножению. Это процесс, который позволяет детям быть родственными, но все же отличается от их двух родителей.
Различия между митозом и мейозом
Теперь, когда вы немного лучше знаете эти два процесса, вам будет легче визуализировать различия между митозом и мейозом:
- Митоз происходит в соматических клетках, а мейоз отвечает за образование гамет с различной генетической нагрузкой.
- Митоз генерирует две дочерние клетки с одинаковой генетической нагрузкой, а мейоз генерирует четыре клетки.
- При этом первая проходит только одно деление, мейоз состоит из двух фаз клеточного деления.
- Клетка, размножающаяся митозом, может быть гаплоидной или диплоидной; вместо этого мейоз всегда будет диплоидным.
- В митозе число хромосом в клетке остается -2n- , но в мейозе оно распадается на две, давая начало гаплоидным клеткам.
- Хромосомы не пересекаются в митозе, но в мейозе они пересекаются, чтобы получить новые порции ДНК.
- В то время как митоз происходит во всем теле живых существ, мейоз происходит только в репродуктивных органах, поскольку это процесс, предназначенный исключительно для поддержания генетической изменчивости при воспроизведении.
Теперь, когда вы знаете эти два процесса немного лучше, вы, несомненно, можете глубже погрузиться в огромный и почти бесконечный мир цитологии. Хотя то, что ускользает от глаз, может показаться очень отличным от макроскопического, вы обнаружите, что многие из его процессов и частей являются отражением самой жизни.
Мейоз
Мейоз или редукционное деление клетки – способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio – уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление – эквационное (лат. aequatio — уравнивание) очень похоже на митоз.
Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде интерфазы) количеством ДНК – 2n4c.
Профаза мейоза
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Конъюгация – сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом – биваленты (лат. bi – двойной и valens – сильный).
После конъюгации становится возможен следующий процесс – кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Метафаза мейоза
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Анафаза мейоза
Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки – n2c, за счет чего мейоз I и называется редукционным делением.
Телофаза мейоза
Происходит цитокинез – деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением – мейозом II.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку – nc. В этом и состоит сущность мейоза – образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки – половые клетки (гаметы).
Разница между митозом и мейозом
Эту иллюстрацию можно распечатать и поместить в рамочку на своем столе, так как она идеально отражает отличия митоза от мейоза. На экзамене часто в заданиях разной степени сложности попадаются вопросы об этом
Итак, важное отличие митоза от мейоза:
В итоге митоза образуется две дочерние диплоидные (с количеством хромосом, характерным для любой особи данного вида) клетки, полностью идентичные материнской. На рисунке они такие же фиолетовые с 46 хромосомами, как и материнская.
В итоге мейоза образуется четыре дочерние клетки с гаплоидным набором хромосом (половина от диплоидного). При этом в процессе кроссинговера и независимого расхождения в них произошло изменение генетической информации. Поэтому на рисунке каждая из них отличается цветом и числом хромосом от материнской.
Во всех вариантах ЕГЭ обязательно присутствуют задания на определение количества хромосом в той или иной фазе митоза или мейоза. Ниже приведены примеры таких заданий относительно мейоза и их решения.
Пример 1.В клетках слизистой оболочки желудка позвоночного животного 24 хромосомы. Определите количество хромосом в профазе мейоза 2 при образовании гамет? В ответ запишите только соответствующее число.
Решение. В профазе второго деления клетки набор хромосом — n2c, так как во время телофазы первого деления количество хромосом уменьшилось вдвое. Здесь нужно вспомнить, что клетки слизистой оболочки желудка соматические, а это значит, что они диплоидные 2n2c (n — число хромосом, c — число ДНК). Следовательно, необходимо количество хромосом уменьшить вдвое.
Ответ: 12.
Пример 2.Соматические клетки лошади содержат 40 хромосом. Определите количество хромосом и молекул ДНК в ядре при образовании гамет перед началом деления и в конце телофазы мейоза II?
Решение.В соматических клетках двойной набор хромосом 2n2c — 40 хромосом и 40 молекул ДНК.В интерфазе, перед началом деления, проходит репликация ДНК, генетический набор 2n4с — 40 хромосом и 80 молекул ДНК.В конце телофазы мейоза II набор nc — 20 хромосом и 20 молекул ДНК.
Ответ: перед началом деления — 40 хромосом и 80 молекул ДНК, в конце телофазы мейоза II — 20 хромосом и 20 молекул ДНК.
Стадии мейоза I
Первая мейотическая фаза – это фаза 1 . Как и в митозе, ядерная мембрана растворяется, хромосомы развиваются из хроматина, а центросомы раздвигаются, создавая веретенообразный аппарат. Гомологичные (сходные) хромосомы обоих родителей объединяются и обмениваются ДНК в процессе, известном как кроссинговер. Это приводит к генетическому разнообразию. Эти парные хромосомы – по две от каждого родителя – называются тетрадами.
В метафазе 1 некоторые волокна веретена прикрепляются к центромерам хромосом. Волокна вытягивают тетрады в вертикальную линию вдоль центра клетки.
Анафаза 1 – это когда тетрады отделяются друг от друга, причем половина пар направляется к одной стороне клетки, а другая половина – к противоположной стороне
Важно понимать, что в этом процессе движутся целые хромосомы, а не хроматиды, как в случае с митозом.
В какой-то момент между концом анафазы 1 и развитием телофазы 1 цитокинез начинает расщеплять клетку на две дочерние клетки. В телофазе 1 аппарат веретена растворяется, и вокруг хромосом развиваются ядерные мембраны, которые теперь находятся на противоположных сторонах родительской клетки / новых клеток.