Как выбрать конденсатор для различных видов электрооборудования?
Определите тип конденсатора
Первым шагом при выборе конденсатора для электрооборудования является определение его типа. Существует несколько видов конденсаторов, включая электролитические, керамические, пленочные и тангенсальные. Каждый тип имеет свои особенности и предназначен для определенных типов приложений. Необходимо учитывать рабочие параметры конденсатора, такие как емкость, рабочее напряжение и допуск на температуру.
Учтите рабочую среду и условия эксплуатации
При выборе конденсатора также необходимо учесть условия эксплуатации и характеристики рабочей среды. Некоторые конденсаторы могут быть неустойчивы к высоким температурам или влажности. В зависимости от особенностей окружающей среды и требований к работе оборудования, нужно выбрать конденсатор, который будет наиболее подходящим.
Пример: Для работы в промышленной среде с высокими температурами и требованиями к высокой надежности, можно выбрать электролитические конденсаторы с низким ESR (эквивалентным последовательным сопротивлением) и высокой температурной стабильностью.
Обратите внимание на емкость и рабочее напряжение
Определение необходимой емкости и рабочего напряжения является следующим важным шагом при выборе конденсатора. Емкость конденсатора определяет его способность хранить электрическую энергию, а рабочее напряжение – наибольшее напряжение, с которым конденсатор может работать без возникновения повреждений.
Пример: Если требуется конденсатор для электронной платы с низкими энергетическими требованиями, можно выбрать керамический конденсатор с небольшой емкостью в несколько микрофарад и низким рабочим напряжением.
В итоге, выбор конденсатора для различных видов электрооборудования зависит от типа конденсатора, условий эксплуатации и требований к работе
Важно учитывать рабочие параметры конденсатора, рабочую среду и необходимые характеристики, чтобы обеспечить надежную и безопасную работу электрооборудования
Чем отличается пусковой конденсатор от рабочего
Пусковой конденсатор и рабочий конденсатор — два основных типа конденсаторов, которые широко применяются в электрических системах и устройствах. Хотя они оба выполняют функцию хранения и выдачи электрической энергии, они имеют свои собственные особенности и применение. Давайте рассмотрим основные отличия между пусковым и рабочим конденсаторами.
Роль и функция
Пусковой конденсатор используется в системах, где требуется мощный стартовый импульс. Его главная функция — обеспечить высокую мощность при пуске электродвигателей, компрессоров, кондиционеров и других устройств. Пусковой конденсатор подключается к обмотке стартера и обеспечивает дополнительный ток для пуска устройства.
Рабочий конденсатор, с другой стороны, предназначен для улучшения эффективности работы электрических устройств. Он используется для компенсации реактивной мощности и коррекции фазы в системах с переменным током. Рабочий конденсатор помогает снизить потери энергии, улучшить коэффициент мощности и повысить эффективность работы устройства.
Ёмкость и номинальные значения
Пусковой конденсатор обычно имеет большую ёмкость, чем рабочий конденсатор. Это обусловлено необходимостью обеспечения достаточной энергии для пуска мощных устройств. Ёмкость пускового конденсатора может быть значительно выше, чем ёмкость рабочего конденсатора.
Номинальные значения пускового конденсатора могут быть выражены в микрофарадах (мкФ) или фарадах (Ф), и они выбираются с учетом требований пускового тока и нагрузки устройства.
Рабочий конденсатор имеет меньшую ёмкость по сравнению с пусковым конденсатором. Его номинальное значение выбирается в зависимости от требуемой коррекции фазы и компенсации реактивной мощности.
Время работы и использование
Пусковой конденсатор используется только на этапе пуска устройства. После успешного пуска его роль становится второстепенной, и он может быть отключен или переключен в режим ожидания. Пусковой конденсатор не предназначен для длительного использования и не способен поддерживать устройство в работе на протяжении длительного времени.
Рабочий конденсатор, напротив, предназначен для длительной работы и поддержания оптимальной эффективности устройства. Он остается подключенным и активным во время работы устройства и выполняет свою функцию по коррекции фазы и компенсации реактивной мощности.
Физические характеристики
Пусковой конденсатор, как правило, имеет более массивные и крупные размеры, чем рабочий конденсатор. Это обусловлено его высокой ёмкостью и потребностью в обеспечении высокой мощности при пуске.
Рабочий конденсатор может иметь более компактные размеры, так как его задача связана с улучшением работы устройства и компенсацией мощности.
Итак, мы рассмотрели основные отличия между пусковым конденсатором и рабочим конденсатором. Пусковой конденсатор предназначен для обеспечения мощного стартового импульса при пуске устройств, в то время как рабочий конденсатор используется для компенсации реактивной мощности и улучшения эффективности работы устройств.
Они имеют различные ёмкости, номинальные значения, режимы работы и физические характеристики. Понимание различий между этими двумя типами конденсаторов поможет вам правильно выбрать и применить их в соответствующих электрических системах и устройствах.
Помните, что использование правильного типа конденсатора в зависимости от его назначения является важным аспектом в обеспечении надежности и эффективности работы электрических устройств.
Схемы подключения
схема подключения электродвигателя с пусковым конденсатором
Большее распространение получила схема, которая имеет в сети пусковой конденсатор.
Данная схема имеет определенные нюансы:
- Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
- Дополнительная обмотка работает небольшое время.
- Термореле включается в цепь для защиты от перегрева дополнительной обмотки.
При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.
К основным моментам создания цепи питания электродвигателя, можно отнести следующее:
- От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
- Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
- После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
- Оба конденсатора идут к двигателю.
Подобным образом можно провести подключение однофазного электродвигателя.
Время работы и использование
Пусковой конденсатор используется только на этапе пуска устройства. После успешного пуска его роль становится второстепенной, и он может быть отключен или переключен в режим ожидания. Пусковой конденсатор не предназначен для длительного использования и не способен поддерживать устройство в работе на протяжении длительного времени.
Рабочий конденсатор, напротив, предназначен для длительной работы и поддержания оптимальной эффективности устройства. Он остается подключенным и активным во время работы устройства и выполняет свою функцию по коррекции фазы и компенсации реактивной мощности.
Отличия пускового и рабочего конденсатора
Фазосдвигающие конденсаторы делятся на рабочие и пусковые. В зависимости от конструкции и назначения агрегата, в составе которого они функционируют, могут участвовать в схеме как по отдельности, так и тандемом.
Рабочий конденсатор – элемент, который функционирует весь цикл вращения. Его ёмкость подбирается по формуле С=k∙I/U , где k – коэффициент, учитывающий схему соединения обмоток: 4,8∙103 для △ и 2,3∙103 для Y. Величину тока I можно рассчитать из формулы P=√3∙U∙I∙cos∙η∙φ. Напряжение элемента должно быть не менее чем в 1,15 раз выше сети, но целесообразнее остановить выбор на полуторакратном запасе
Важно отметить, что привод мощностью более 1 кВт предпочтительнее подключать звездой. Также стоит не забывать о присущих любому электродвигателю пусковых токах и для подключения использовать автоматический выключатель с время-токовой характеристикой «D»
Пусковой конденсатор – элемент, выполняющий свою задачу довольно непродолжительный отрезок времени. По достижении двигателем номинальных параметров, происходит отключение пускового участка цепи. Осуществляется это посредством использования специальных кнопочных постов, центробежного выключателя, реже встречается токовое реле, реле времени. Напряжение пускового конденсатора должно быть в 2-3 раза выше номинального в силу факторов, разобранных выше. При этом нужно иметь в виду, что согласно используемого «ФСК ЕЭС» ГОСТ 29322-2014 Таб. А.1 напряжение в сети может находиться в диапазоне от 198 до 253 В. Ёмкость пускового конденсатора в 2,5 раза должна превышать соответствующий параметр рабочего конденсатора: Cп=2,5∙Ср. Исходя из соображений безопасности, пусковой конденсатор шунтируется разрядным резистором, который снимает остаточный заряд в течении 50 с.
Существуют разные варианты подключений и они вносят свои коррективы в расчёты: если в схеме пусковая обмотка и пусковой конденсатор участвуют кратковременно – на 1 кВт приходится около 70 мкФ. Для рабочего конденсатора с допобмоткой будет достаточно 30 мкФ. Когда схема предусматривает разгон с пусковым, а работу с рабочим конденсатором на каждый кВт потребуется 10 мкФ.
Как видно, конструктивно разницы между пусковым и рабочим конденсаторами нет. Отличаются они параметрами, которые зависят от используемой схемы. Если расчёты показали необходимость использования ёмкости, которой нет в списке стандартных величин производителя, можно набрать схему из нескольких конденсаторов: при параллельном подключении ёмкости суммируются, а при последовательном расчёт выполняется по формуле 1/Собщ= 1/С1+1/С2+…1/Сn. Не стоит завышать ёмкость – это чревато перегревом. В свою очередь заниженный параметр не даст вращающего момента нужной величины, что не позволит ротору стартовать
Важно помнить, что с годами конденсаторы теряют ёмкость и перед использованием «великовозрастной» запчасти стоит проверить её показатели измерителем ёмкости
В завершении уместным будет осветить нормативную сторону вопроса. В РФ устройство конденсаторов для двигателей переменного тока регламентируется ГОСТ IEC 60252-1-2011 и ГОСТ IEC 60252-2-2011, идентичными международным IEC 60252-1:2001 и IEC 60252-2:2003 соответственно. При этом в НТД от МЭК впоследствии были внесены значительные правки, а вот отечественные стандарты остались без корректив до сих пор. Среди прочих изменений было увеличено количество классов защиты и значительно расширены требования по информации, наносимой на деталь.
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
- Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
- Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
- Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
- Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
- КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
- Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
- Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
- После вычисления тока можно найти показатель емкости рабочего конденсатора.
- Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
- Интервал рабочей температуры.
- Возможное отклонение от расчетной емкости.
- Сопротивление изоляции.
- Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
- Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
- Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Отличия между пусковым и рабочим конденсатором
Главное различие между этими элементами сети заключается в их предназначении. Так:
Рабочий конденсатор используется при сдвиге фаз. Он также может называться «первым». Используется он постоянно в течение всего периода эксплуатации двигателя – и поэтому не исключается из цепи. Подключается он, как правило, последовательно со вспомогательной обмоткой. Поскольку он используется при переключении фаз, его ёмкость должна быть сравнительно маленькой. Это поможет избежать перегрева мотора, замедления роста мощности и торможения крутящего момента;
Пусковой конденсатор используется при старте двигателя. После того, как мотор достигает необходимых частоты и мощности, его исключают из цепи. Ёмкость повышает стартовый момент мотора, обеспечивая его более быстрый выход на обычный эксплуатационный режим.
Рассмотрим эти ёмкостные элементы более подробно – с точки зрения эксплуатационных и электротехнических характеристик.
Характеристика | | |
Где применяется | В асинхронных электромоторах | В асинхронных электромоторах |
Как подключается | Параллельно рабочему | Последовательно со вспомогательной обмоткой |
Для чего нужен | Для создания стартового магнитного поля, которое повышает крутящий момент двигателя при запуске | Для создания вращающегося электромагнитного поля, необходимого для приведения ротора в движение |
Когда используется | В процессе всего времени работы двигателя | При старте двигателя |
На какие условия рассчитан | На стандартные, для 220 В мотора нужен ёмкостной элемент на 220 В | На «жёсткие» с превышением напряжения. Для 220 В мотора нужен ёмкостной элемент на 500-600 В |
Подходящий тип | Бумажные или маслонаполненные | Электролитические |
Вышеуказанная разница в условиях работы обусловлена элементарными физическими процессами, протекающими во время эксплуатации деталей. Рабочий подключается в обмотку электромотора, которая являет собой простейший колебательный контур. Как следствие, в некоторые периоды времени на выводах этой цепи образуется напряжение, которое в 2-2,5 раза превышает таковое на входах. Из-за этого нерассчитанные на такое воздействие детали просто сгорают.
Пусковые детали работают в менее жёстких условиях. Напряжение, которое прикладывается к этим элементам, практически не превышает основное – а если и превышает, то незначительно, примерно в 1,15 раза. Этим можно пренебречь и использовать 220-вольтовые варианты – особенно если учесть их непродолжительный период эксплуатации в процессе включения цикле станка или иного устройства.
Как следствие, в качестве включающихся последовательно с обмоткой конденсаторов необходимо выбирать варианты, выдерживающие продолжительное воздействие повышенных напряжений. Практика показывает, что таковыми являются бумажные или маслонаполненные варианты (марки МБГЧ, МБГО). Причём, если судить по опыту отечественных пользователей, элементы российского производства характеризуются большей долговечностью и надёжностью.
Впрочем, они не лишены и недостатков. В частности, МБГЧ и МБГО отличаются большими размерами. Из-за этого подключить их в компактные устройства не получится. Можно, конечно, использовать более компактные оксидные, но в этом случае потребуется устанавливать диоды по определённой схеме.
Электролитические модели, хотя и могут быть рассчитаны на значительные эксплуатационные напряжения, применяются только в качестве пусковых. Это обусловлено ещё одной особенностью электромоторов. В сетях, куда они включены, при их работе возникает реактивное напряжение. Электролитические ёмкости под его действием очень быстро закипают, что приводит к повреждению самого устройства, а также оборудования, и является источником опасности для обслуживающего персонала.
Условия – работа – конденсатор
Условия – работа – конденсатор
Условия работы конденсаторов в схеме КПИ отличаются от нормальных условий их работы при синусоидальном напряжении и частоте 50 гц. Поэтому часто теоретическое решение задачи сравнения сроков службы конденсаторов, включенных непосредственно в сеть и схему КПИ, представляет серьезные трудности. Главной причиной выхода из строя бумажно-масляных конденсаторов является нарастание повреждений в местах газовых включений, в которых возникают очаги ионизации газа. Поскольку эта ионизация зависит от напряженности электрического поля в конденсаторах, можно предположить, что критерием равнопрочное конденсаторов, работающих в различных условиях, может являться равенство действующих напряжений в этих условиях.
Условия работы конденсаторов в схеме КПИ, например типа КМ, отличаются от нормальных условий работы их при синусоидальном напряжении и частоте 50 гц.
Условия работы конденсаторов в схеме КПИ отличаются от нормальных условий их работы при синусоидальном напряжении и частоте 50 гц. Поэтому часто теоретическое решение задачи сравнения сроков службы конденсаторов, включенных непосредственно в сеть и схему КПИ, представляет серьезные трудности. Главной причиной выхода из строя бумажно-масляных конденсаторов является нарастание повреждений в местах газовых включений, в которых возникают очаги ионизации газа. Поскольку эта ионизация зависит от напряженности электрического поля в конденсаторах, можно предположить, что критерием равнопрочности конденсаторов, работающих в различных условиях, может являться равенство действующих напряжений в этих условиях.
Практически условия работы конденсатора более сложны из-за непостоянного по своей величине избыточного давления газа А / г внутри аппарата. Всякое изменение давления газа тотчас сказывается на уровне воды в конденсаторах.
При значительном газообразовании ухудшаются условия работы конденсаторов, перегружаются компрессоры и абсорбер.
В заключение следует рассмотреть условия работы конденсатора в сети, частота которой отличается от его номинальной частоты. Эксплуатация конденсаторов в сети, частота которой ниже номинальной частоты, не представляет какой-либо опасности. Реактивная мощность конденсатора при этом, уменьшается пропорционально частоте, и условия работы диэлектрика между обкладками становятся более легкими. Эксплуатация конденсаторов при частоте, хотя бы немного превышающей их номинальную частоту, – может быть допущена только при одновременном снижении эксплуатационного напряжения сравнительно с номинальным напряжением конденсаторов.
При значительном газообразовании ухудшаются условия работы конденсаторов, перегружаются компрессоры и абсорбер.
При этом, конечно, изменяются условия работы конденсатора и температура паровоздушной смеси см во всасывающем патрубке эжектора.
Проведенные исследования показали, что при соответствующем выборе параметров R-С – цепей можно существенно улучшить условия работы демпфирующих конденсаторов и снизить коэффициент коммутационных перенапряжений до 1.3 вместо обычно принимаемого в расчетах коэффициента 1.65. Выбор параметров R-С – цепи должен осуществляться на стадии проектирования, на основе соответствующих расчетов.
Размер активной поверхности охладителя оказывает влияние только на температуры входящей и выходящей воды, а не на их разность, остающуюся постоянной, если условия работы конденсатора не меняются.
Размер активной поверхности охладителя оказывает влияние только на температуры входящей и выходящей воды, а не на их разность, остающуюся постоянной, если условия работы конденсатора не меняются.
К числу недостатков относится быстрый износ труб, в случае применения трубчатого конденсатора для работы на дестиллатах, содержащих серу, быстро разъедающую относительно тонкие стенки цельнотянутых труб аппарата. Условия работы конденсаторов благоприятствуют коррозии, так как она наиболее резко проявляется в момент перехода коррозирующего агента из паровой в жидкую фазу, что как раз и имеет место в этих аппаратах.
Страницы: 1 2
Устройство и принцип работы
Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.
Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.
По своему устройству он не отличается от обычного асинхронника и в составе имеет:
- Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
- Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.
Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.
По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.
Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов
Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов
В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.
Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой
Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей
В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.
Особенности трёхфазного двигателя
Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:
- простота строения;
- надёжность в работе;
- при подключении в нормальном режиме не используются дорогие и дефицитные устройства;
- количество технических обслуживаний невелико.
Подключить трехфазный двигатель на 220 можно пытаться, зная различия схем соединения обмоток. Количество фаз, на которое рассчитан двигатель, можно определить по числу зажимов в его клеммной коробке: у трёхфазного в ней будет 6 выводов, а у однофазного два или четыре. Обмотки мотора с тремя фазами соединяются по установленной схеме, называемой «звездой» или «треугольником». Каждая из них имеет свои преимущества и недостатки. При соединении в звезду концы обмоток соединены. В клеммной коробке эта схема соединения будет отображена использованием двух перемычек между зажимами с обозначениями «С6», «С4», «С5».
Если же обмотки двигателя соединяются в треугольник, то к каждому концу присоединяется начало. В клеммной коробке будут использованы три перемычки, которые будут соединять зажимы «С1» и «С6», «С2» и «С4», «С3» и «С5». Трехфазные двигатели рассчитаны на рабочее напряжение в 380 В. Но не всегда в быту имеется такое напряжение. Поэтому возникает проблема: как осуществить подключение электродвигателя через конденсатор к бытовой сети?
Наиболее приемлемый и общедоступный способ — применение фазосдвигающего конденсатора. В таком режиме может быть достигнута 50–60%-ная мощность от номинальной. Отметим, что не все асинхронные двигатели одинаково хорошо будут работать при включении в однофазную сеть. Наиболее приспособлены к данным условиям двигатели, имеющие короткозамкнутый ротор, выполненный в виде двойной клетки.
Оптимальная работа электродвигателя достигается лишь в случае, если емкость конденсатора будет изменяться по мере увеличения скорости вращения. Практически очень сложно осуществить это требование. В связи с этим принято двухступенчатое управление двигателем. Пуск осуществляется с помощью двух конденсаторов (пускового — Сп и рабочего — Ср). Затем, при наборе нужной скорости вращения, пусковой нужно отключить. Основная функция его состоит в увеличении пускового момента.
Расчет конденсатора для электродвигателя можно произвести таким образом. Расчетная формула имеет вид: Ср = К*(Iн/U). Здесь приняты следующие обозначения:
- сила тока (номинальная) — Iн (А);
- напряжение (номинальное) — U (В);
К — безразмерный коэффициент.
Значение К определяется тем, как включен двигатель. К = 2800, когда двигатель включен по схеме «звезда». Если же он включен по схеме «треугольник», то значение К = 4800.
Конденсаторы для запуска электродвигателя рекомендуется выбрать из бумажных, в частности:
- бумажных, герметичных, в металлическом корпусе, маркировка КБГ-МН
- бумажных, термостойких, условное обозначение БГТ;
- металлобумажных, частотных, МБГЧ.
В случае необходимости поменять направление вращения двигателя достаточно поменять местами провода, подключенные к зажимам конденсатора. Запуск электродвигателя с помощью конденсатора лучше осуществлять по схеме «треугольник». В этом случае можно добиться максимальной выходной мощности (до 70 %). В качестве примера рассмотрим двигатель АО2. Его номинальная мощность 2,2 кВт, частота вращения — 1420 об/мин. Для его запуска в режиме холостого хода (или при наличии нагрузки) потребуются 2 конденсатора: первый емкостью 230 мкФ (рабочий) и второй емкостью 150 мкФ (пусковой).
Заключение
Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий. Чаще всего оказывается достаточно рабочего конденсатора
. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатировать двигатель без него не рекомендуется. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу двигателя.
Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной
(как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется
Это важно знать при подборе необходимой емкости для электрической цепи
Для запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:
- Пусковые.
- Рабочие.
Пусковой конденсатор предназначен для кратковременной работы
– запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.
Для запуска двигателя используют кнопку Кн1
, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.
Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.
Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В
. Это обеспечит необходимый запас по напряжению в процессе работы.
При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.
Различают два вида соединения обмоток трехфазного двигателя:
- Треугольник.
- Звезда.
Для каждого из этих способов соединения свой расчет.
Треугольник: Ср=4800*Ip/Up
.
Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.
Звезда: Ср=2800*Ip/Up
.
Пример: двигатель 1000 Вт – ток составляет примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ
.
Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.