Сравнительная характеристика ДНК и РНК.
Сравнительное правоведение | Ответы к зачету/экзамену | 2016 | Россия | docx | 0.25 Мб
Сравнительное правоведение как наука и учебная дисциплина. Цели, задачи и функции сравнительного правоведения. Принципы сравнительного правоведения. Сравнительное правоведение в системе общественных
Сравнительный менеджмент Орлов А.В. | Конспект лекций | Лекция | 2015 | Сравнительное | docx | 1.05 Мб
Введение в дисциплину Глава 1 Возникновение и эволюция сравнительного менеджмента 1.1. Сравнительный менеджмент как учебная дисциплина и раздел теории и практики менеджмента на Западе 1.2. Предмет
Сравнительное правоведение | Ответы к зачету/экзамену | 2016 | Россия | docx | 0.32 Мб
1. Зарождение и развитие идей сравнительного правоведения в древнем мире. 2. Зарождение и развитие идей сравнительного правоведения в средние века. 3. Развитие идей сравнительного правоведения в
Шпаргалка по сравнительной адвокатуре | Шпаргалка | 2016 | Россия | docx | 0.15 Мб
1) ПРЕДМЕТ, ЗАВДАННЯ, СИСТЕМА КУРСУ, ПОРІВНЯЛЬНА АДВОКАТУРА 2) ЗАРОДЖЕННЯ АДВОКАТУРИ У СВІТІ 3) АДВОКАТУРА У СЕРЕДНІ ВІКИ 4) АДВОКАТУРА У НОВИЙ ЧАС 5) АДВОКАТУРА У КИЇВСЬКІЙ РУСІ 6) УКРАЇНСЬКА
Ответы к экзамену по дисциплине Основы предпринимательства | Ответы к зачету/экзамену | | Россия | docx | 0.21 Мб
Объективные и субъективные предпосылки развития предпринимательства. Признаки предпринимательства. Определение, цели и задачи предпринимательской деятельности. Стимулы (побудительные мотивы) к
Ответы на Гос.экзамен по специальности Управление персоналом | Ответы к госэкзамену | 2008 | Россия | docx | 0.31 Мб
Вопросы По курсу «Основы управления персоналом» Теории управления персоналом. Концепция управления персоналом на современном этапе Закономерности и принципы управления персоналом Методы управления
Ответы по антикризисному управлению | Ответы к зачету/экзамену | 2017 | Россия | docx | 0.5 Мб
1. Внешняя и внутренняя среда организации. 2. Система менеджмента: функции и организационные структуры. 3. Системный подход в теории управления. Организация как открытая система. 4. Процессы
Ответы к экзамену по дисциплине Основы гигиены | Ответы к зачету/экзамену | 2016 | docx | 10.54 Мб
1.Предмет, содержание и задачи общей гигиены. Методы исследований. Связь гигиены с биологическими, клиническими и другими дисциплинами. Основные концепции гигиены. 2. Место гигиены в системе
Коммерческая логистика | Ответы к зачету/экзамену | 2016 | Россия | docx | 0.51 Мб
1. ПОНЯТИЕ МАТЕРИАЛЬНОГО ЗАПАСА 2.ПРИЧИНЫ СОЗДАНИЯ МЗ 3. ОСНОВНЫЕ И ДОПОЛНИТ. ВИДЫ МЗ 4.ЗАКАЗ КРУПНОЙ ПАРТИИ. 5.ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМ КОНТРОЛЯ СОСТОЯНИЯ ЗАПАСОВ 6.СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА
Ответы на вопросы к экзамену – Управление затратами | Ответы к зачету/экзамену | 2016 | Россия | docx | 0.05 Мб
1 сущность системного подхода при принятии управленческих решений 2 сущность системного подхода при принятии управленческих решен 3 сущность системного подхода при принятии управленческих решений:
Что такое ДНК
По научному
ДНК — это молекула, в которой закодирована генетическая информация. Структура ее была впервые открыта Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Она представляет собой двойную спираль, то есть состоит из двух длинных цепей, намотанных друг на друга. Эти спирали состоят из более мелких единиц, называемых нуклеотидами. В ДНК есть четыре различных типа нуклеотидов: аденин (A), тимин (T), цитозин (C) и гуанин (G). Порядок расположения нуклеотидов определяет информацию, доступную для создания и поддержания организма. Кроме того, ДНК отвечает за передачу генетической информации к одному поколению от другого.
Про одноцепочечную ДНК — это молекула, состоящая из двух спиралей, закрученных друг вокруг друга. Спиали удерживаются вместе водородными связями. Внешняя часть каждой спирали называется фосфатной группой.
О мусорной ДНК — это та, которая не используется для синтеза белка. Джанк-ДНК — это термин, используемый для описания частей последовательности, которые не кодируют белки. Считается, что эти последовательности являются регуляторными или не кодирующими и могут выполнять важные функции по контролю экспрессии генов или хромосомной организации.
По-простому
Молекула ДНК хранится генетическая информация. Ее структура была открыта Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Это двойная спираль, то есть две длинные спирали, обернутые друг вокруг друга. Эти спирали состоят из более мелких единиц, называемых нуклеотидами.
ДНК кодирует генетическую информацию. Порядок расположения нуклеотидов в ДНК определяет, какие белки будут произведены. Последовательности нуклеотидов переводится в очерёдность аминокислот, которые затем образуют белок.
Молекула ДНК содержит генетическую информацию организма. Порядок расположения нуклеотидов в ней определяет информацию, доступную для создания и поддержания организма. Кроме того, она отвечает за передачу генетической информации к одному поколению от другого.
История открытия ДНК — дезоксирибонуклеиновой кислоты
Открытие ДНК было сделано дважды: Иоганном Фридрихом Мишером в 1869 году и Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Это большая молекула, состоящая из азота и фосфора, которая содержится в клетках. Первоначально она называлась нуклеином, однако были обнаружены ее кислотные свойства, и она была переименована в нуклеиновую кислоту. Изначально, как считали ученые, основная функция нуклеиновой кислоты была для хранения фосфора, но с тех пор ученые обнаружили, что они играют и множество других важных ролей в организме.
В первый раз ДНК открыл Иоганн Фридрих Мишер в 1869 году. Это был швейцарский ученый, который изучал клетки гноя из хирургических повязок. Он обнаружил, что содержится в ядре клетки.
Джеймс Уотсон и Фрэнсис Крик
Второе открытие структуры ДНК в 1953 году сделали Джеймс Уотсон и Фрэнсис Крик. Это стало вехой в нашем понимании живых существ. Их работа показала, что представляет собой двухцепочечная молекула ДНК, состоящую из двух длинных цепей нуклеотидов. Эти цепи наматываются друг на друга, так и образуется двойная спираль. Нуклеотиды в ней расположены в определенном порядке, и этот порядок определяет последовательности аминокислот в белках. Белки отвечают за структуру и функционирование нашего организма.
Догма о ДНК гласит, что она является местом хранения генетической информации и может служить матрицей для синтеза РНК, рибонуклеиновой кислоты.
Строение и функции ДНК
ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).
Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.
Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.
Моносахарид нуклеотида ДНК представлен дезоксирибозой.
Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.
Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3″-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5″-углеродом (его называют 5″-концом), другой — 3″-углеродом (3″-концом).
Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.
Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.
Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3″-конца одной цепи находится 5″-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.
Функция ДНК — хранение и передача наследственной информации.
Какие функции выполняет ДНК?
Сравнивая ДНК и РНК, невозможно упустить вопрос выполняемых функций. В итоговой таблице эта информация обязательно будет отражена.
Итак, не сомневаясь ни секунды, мы можем утверждать, что в маленькой молекуле ДНК запрограммирована вся генетическая информация, способная контролировать каждый наш шаг. Сюда относятся:
- здоровье;
- развитие;
- продолжительность жизни;
- наследственные болезни;
- сердечно-сосудистые заболевания и пр.
Представьте, что мы выделили все молекулы ДНК из одной клетки человеческого организма и разложили их в ряд. Как вы думаете, какая длина цепочки получится? Многие подумают, что миллиметры, но это не так. Длина данной цепи будет составлять целых 7,5 сантиметров. Невероятно, но почему мы тогда клетку не можем разглядеть без мощного микроскопа? Все дело в том, что молекулы очень сильно спрессованы. Вспомните, мы в статье уже говорили о размерах Эйфелевой башни.
А какие же все-таки функции выполняют ДНК?
- Являются носителями генетической информации.
- Воспроизводят и передают информацию.
История исследования
В 1847 из экстракта мышц быка было выделено вещество, которое получило название «инозиновая кислота». Это соединение стало первым изученным нуклеотидом. В течение последующих десятилетий были установлены детали его химического строения. В частности, было показано, что инозиновая кислота является рибозид-5′-фосфатом, и содержит N-гликозидную связь.
В 1868 году швейцарским химиком Фридрихом Мишером при изучении некоторых биологических субстанций было открыто неизвестное ранее вещество. Вещество содержало фосфор и не разлагалось под действием протеолитических ферментов. Также оно обладало выраженными кислотными свойствами. Вещество было названо «нуклеином»
Соединению была приписана брутто-формула C29H49N9O22P3.
Уилсон обратил внимание на практическую идентичность химического состава «нуклеина» и открытого незадолго до этого «хроматина» — главного компонента хромосом. Было выдвинуто предположение об особой роли «нуклеина» в передаче наследственной информации.
В 1889 г Рихард Альтман ввел термин «нуклеиновая кислота», а также разработал удобный способ получения нуклеиновых кислот, не содержащих белковых примесей.
Левин и Жакоб, изучая продукты щелочного гидролиза нуклеиновых кислот, выделили их основные составляющие — нуклеотиды и нуклеозиды, а также предложили адекватные структурные формулы, описывающие их свойства.
В 1921 году Левин выдвинул гипотезу «тетрануклеотидной структуры ДНК», оказавшуюся впоследствии ошибочной.
В 1935 году Клейн и Танхаузер с помощью фермента фосфатазы провели мягкое фрагментирование ДНК, в результате чего были получены в кристаллическом состоянии четыре ДНК-образующих нуклеотида
Это открыло новые возможности для установления структуры этих соединений.
В 1940-е годы научная группа в Кембридже под руководством Александера Тодда проводит широкие синтетические исследования в области химии нуклеотидов и нуклеозидов
В результате их работы были установлены все детали химического строения и стереохимии нуклеотидов. За цикл работ в этой области Александер Тодд был награждён Нобелевской премией в области химии в 1957 году.
В 1951 году Чаргаффом была установлена закономерность содержания в нуклеиновых кислотах нуклеотидов разных типов, получившая впоследствии название Правило Чаргаффа.
В 1953 году Уотсоном и Криком установлена вторичная структура ДНК, двойная спираль.
Это открыло новые возможности для установления структуры этих соединений.
В 1940-е годы научная группа в Кембридже под руководством Александера Тодда проводит широкие синтетические исследования в области химии нуклеотидов и нуклеозидов. В результате их работы были установлены все детали химического строения и стереохимии нуклеотидов. За цикл работ в этой области Александер Тодд был награждён Нобелевской премией в области химии в 1957 году.
В 1951 году Чаргаффом была установлена закономерность содержания в нуклеиновых кислотах нуклеотидов разных типов, получившая впоследствии название Правило Чаргаффа.
В 1953 году Уотсоном и Криком установлена вторичная структура ДНК, двойная спираль.
ДНК (дезоксирибонуклеиновая кислота)
ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.
ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.
Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.
ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.
Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.
Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.
Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.
Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.
Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.
Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.
В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.
Таким образом,
- ТИМИН (Т) комплементарен АДЕНИНУ (А),
- ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Репликация ДНК
Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.
Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.
После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.
После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.
Таким образом, сохраняется и передается новому поколению исходная структура ДНК.
Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.
Видеофильм «ДНК. Код Жизни»
Рубрики: Нуклеиновые кислоты
функция
ДНК предоставляет живым организмам руководящие принципы – генетическую информацию в хромосомной ДНК – которая помогает определить природу биологии организма, как он будет выглядеть и функционировать, основываясь на информации, передаваемой от предыдущих поколений в процессе размножения. Медленные, устойчивые изменения, обнаруживаемые в ДНК с течением времени, известные как мутации, которые могут быть разрушительными, нейтральными или полезными для организма, лежат в основе теории эволюции.
Гены находятся в небольших сегментах длинных цепей ДНК; у людей около 19 000 генов. Подробные инструкции, содержащиеся в генах, определяемые тем, как упорядочены нуклеиновые основания в ДНК, несут ответственность как за большие, так и за маленькие различия между разными живыми организмами и даже среди похожих живых организмов. Генетическая информация в ДНК – это то, что заставляет растения выглядеть как растения, собаки – как собаки, а люди – как люди; это также то, что мешает разным видам производить потомство (их ДНК не будет соответствовать новой здоровой жизни). Генетическая ДНК – это то, что заставляет некоторых людей иметь кудрявые, черные волосы, а других – прямые, светлые волосы, и что делает одинаковых близнецов похожими. ( См. Также Генотип против Фенотипа .)
РНК выполняет несколько различных функций, которые, хотя и связаны между собой, немного различаются в зависимости от типа. Существует три основных типа РНК:
- РНК-мессенджер (мРНК) транскрибирует генетическую информацию из ДНК, найденной в ядре клетки, и затем передает эту информацию в цитоплазму и рибосому клетки.
- Трансферная РНК (тРНК) находится в цитоплазме клетки и тесно связана с мРНК в качестве ее помощника. тРНК буквально переносит аминокислоты, основные компоненты белков, в мРНК в рибосоме.
- Рибосомная РНК (рРНК) обнаружена в цитоплазме клетки. В рибосоме он берет мРНК и тРНК и транслирует информацию, которую они предоставляют. Из этой информации он «узнает», должен ли он создавать или синтезировать полипептид или белок.
Гены ДНК экспрессируются или проявляются через белки, которые ее нуклеотиды продуцируют с помощью РНК. Признаки (фенотипы) происходят из того, какие белки сделаны и которые включены или выключены. Информация, найденная в ДНК, определяет, какие признаки должны быть созданы, активированы или деактивированы, в то время как различные формы РНК выполняют свою работу.
Одна гипотеза предполагает, что РНК существовала до ДНК и что ДНК была мутацией РНК. Видео ниже обсуждает эту гипотезу более подробно.
Перевод на рибосоме
После того, как мРНК синтезируется ДНК во время транскрипции, новая молекула перемещается из ядра в цитоплазму, проходя через ядерную мембрану через ядерную пору. Затем он объединяет силы с рибосомой, которая как раз собирается вместе из двух своих субъединиц, одной большой и одной маленькой.
Рибосомы являются участками переводили использование информации в мРНК для производства соответствующего белка.
Во время трансляции, когда цепь мРНК «стыкуется» с рибосомой, аминокислота, соответствующая трем незащищенным нуклеотидным основаниям, то есть триплетному кодону, перемещается в область с помощью тРНК. Подтип тРНК существует для каждой из 20 аминокислот, что делает этот процесс перемещения более упорядоченным.
После того, как нужная аминокислота присоединяется к рибосоме, она быстро перемещается в ближайший участок рибосомы, где полипептид, или растущая цепь аминокислот, предшествующая появлению каждого нового добавления, находится в процессе завершения.
Сами рибосомы состоят из примерно равной смеси белков и рРНК. Две субъединицы существуют как отдельные объекты, за исключением случаев, когда они активно синтезируют белки.
Функция нуклеиновых кислот
Информация о магазине нуклеиновых кислот, как компьютерный код
Безусловно, наиболее важной функцией нуклеиновых кислот для живых организмов является их роль носителя информации. Поскольку нуклеиновые кислоты могут быть созданы с четырьмя «основаниями» и поскольку «правила спаривания оснований» позволяют «копировать» информацию, используя одну цепь нуклеиновых кислот в качестве шаблона для создания другой, эти молекулы способны как содержать, так и копировать информацию. Поскольку нуклеиновые кислоты могут быть созданы с четырьмя «основаниями» и поскольку «правила спаривания оснований» позволяют «копировать» информацию, используя одну цепь нуклеиновых кислот в качестве шаблона для создания другой, эти молекулы способны как содержать, так и копировать информацию
Поскольку нуклеиновые кислоты могут быть созданы с четырьмя «основаниями» и поскольку «правила спаривания оснований» позволяют «копировать» информацию, используя одну цепь нуклеиновых кислот в качестве шаблона для создания другой, эти молекулы способны как содержать, так и копировать информацию.
Чтобы понять этот процесс, может быть полезно сравнить код ДНК с двоичным кодом, используемым компьютерами. Два кода очень разные по своей специфике, но принцип один и тот же. Так же, как ваш компьютер может создавать целые виртуальные реальности, просто считывая строки 1 и 0, клетки могут создавать целые живые организмы, считывая строки из четырех пар оснований ДНК.
Как вы можете себе представить, без бинарного кода у вас не было бы компьютера и компьютерных программ. Точно так же живые организмы нуждаются в неповрежденных копиях своего «исходного кода» ДНК, чтобы функционировать.
Параллели между генетический код и двоичный код даже побудил некоторых ученых предложить создание «генетических компьютеров», которые могли бы хранить информацию гораздо более эффективно, чем жесткие диски на основе кремния. Однако, поскольку наша способность записывать информацию о кремнии возросла, мало внимания уделялось исследованиям «генетических компьютеров».
Защита информации
Поскольку исходный код ДНК так же важен для клетка поскольку ваша операционная система находится на вашем компьютере, ДНК должна быть защищена от возможного повреждения. Чтобы транспортировать инструкции ДНК в другие части клетки, копии ее информации делаются с использованием другого типа нуклеиновой кислоты – РНК.
Это РНК-копии генетической информации, которые отправляются из ядра и вокруг клетки для использования в качестве инструкций клеточным механизмом.
Клетки также используют нуклеиновые кислоты для других целей. Рибосомы – клеточные машины, которые производят белок – и некоторые ферменты сделаны из РНК.
ДНК использует РНК как своего рода защитный механизм, отделяющий ДНК от хаотической среды цитоплазма, Внутри ядра ДНК защищена. За пределами ядра движения органелл, везикул и других клеточных компонентов могут легко повредить длинные и сложные нити ДНК.
Тот факт, что РНК может действовать как в качестве наследственного материала, так и в качестве фермента, подтверждает идею о том, что самой первой жизнью могла быть самореплицирующаяся, самокатализирующаяся молекула РНК.
Транскрипция
Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.
Сходствами являются следующие части:
- начало идет с деспирализации ДНК;
- происходит разрыв водородных связей между основаниями цепей;
- к ним комплементарно подстраиваются НТФ;
- происходит образование водородных связей.
Отличия от репликации:
- при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
- при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
- информация списывается лишь с определенного участка;
- после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.
Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.
У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.
В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.
В т-РНК модифицируются основания, образуя минорные виды.
У р-РНК также метилируются отдельные основания.
Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.