Что такое днк и рнк. Что такое ДНК простыми словами?
ДНК, или дезоксирибонуклеиновая кислота — это уровень организации живой природы. В каждом растении, животном и человеке имеются три вида макромолекул: ДНК, РНК и белки. В ДНК хранится вся генетическая информация и информация о строении двух других макромолекул. Роль ДНК в передаче наследственной информации можно сравнить с ролью чертежа или кода, на котором базируются основные данные об организме. Данная макромолекула определяет генетический набор признаков, изменчивость и развитие организма.
Открытие дезоксирибонуклеиновых кислот
Открытие дезоксирибонуклеиновых кислот Уотсоном и Криком датируется 1953 годом. Эти ученые, исследуя, что такое ДНК, предложили структуру молекулы в виде двойной спирали. Их гипотеза была позднее подтверждена, а самим ученым вручили в 1962 году Нобелевскую премию по медицине. Эти исследования и открытия стали возможны благодаря работам других ученых, трудившихся ранее над этой проблемой.
Первые исследования в этой области принадлежат Иоганну Мишеру, выделившему в 1869 году ДНК как отдельную структуру. Изначально ДНК получило название нуклеиновая кислота. Структура ДНК считалась слишком простой, чтобы хранить генетическую информацию, и ей приписали свойство хранения запасов фосфора в организме . Дальнейшие исследования ученых разных стран привели к мысли о сложнейшей структуре ДНК и о ее главной роли в передаче наследственной информации. Современные изыскания ведутся по пути исследования точного состава ДНК, ее структуры, возможности изменений и мутаций.
Строение дезоксирибонуклеиновой кислоты
Структура дезоксирибонуклеиновой кислоты настолько сложна, что ученые до сих пор продолжают изучать, что такое ДНК, и делать открытия в этой области. ДНК — это макромолекула, состоящая из нуклеотидов, объединенных в полинуклеотидные цепочки. Эти цепи соединяются с помощью водородных связей попарно и закручиваются по спирали, зачастую вправо. Кроме некоторых вирусов, ДНК всех живых организмов имеют двуспиральную структуру.
Каждая цепочка ДНК представляет собой чередование сахаров и фосфатов. Для ДНК характерен ряд оснований:
- гуанин;
- тимин;
- цитозин;
- аденин.
Виды нуклеотидов, находящиеся на одной цепи, объединяются с конкретными основаниями на другой цепи. Такие связи оснований называют комплементарными и подразумевают точное отражение информации одной цепи в другой.
Типы нуклеотидов ДНК и РНК
Молекула нуклеотидов в ДНК и РНК состоит из таких частей:
- азотистое основание (тимин, гуанин, цитозин и аденин);
- фосфорная кислота;
- пятиуглеродный сахар.
Нуклеотидный сахар состоит из пяти углеродных атомов, образуя пентозу. Вид пентозы, из которого состоит нуклеотид, определяет вид нуклеиновой кислоты:
- Рибонуклеиновая кислота — РНК, если пентоза состоит из рибозы.
- Дезоксирибонуклеиновая кислота. Каждый нуклеотид дезоксирибонуклеиновой кислоты ДНК обязательно содержит дезоксирибозу. В отличие от рибозы дезоксирибоза содержит на один атом кислорода меньше.
Как нуклеотиды ДНК соединены в одну цепь?
Чтобы образовалась цепь ДНК из нуклеотидов, необходима реакция конденсации. В процессе этой реакции углерод остатка сахара одного нуклеотида и остаток фосфорной кислоты другого вступают в сложную связь, образуя неразветвленные полинуклеотидные цепочки. Структура ДНК состоит из ряда таких нуклеотидных цепей. Между нуклеотидами образуются прочные фосфодиэфирные мостики, уменьшающие риск появления проблем в структуре нуклеотидов.
Что нужно для анализа ДНК?
Анализ ДНК стал популярным не только в медицине, но и в криминалистике, позволяя доказать участие подозреваемого в преступлении. Сегодня же все чаще такое исследование упоминают на скандальных ток-шоу, где выясняют отцовство. Сравнение ДНК ребенка и его потенциального родителя практически на 100% дает ответ о возможном родстве. При этом для анализа не требуется сложный забор биоматериала. ДНК содержится практически во всех живых клетках: в слюне, крови, сперме, эпителии, ушной сере. Но чтобы получить достоверный результат, лучше сдавать для анализа кровь из вены непосредственно в лаборатории. Сам анализ проводится в несколько этапов и требует применения технологичного оборудования и специальных реактивов. Именно поэтому тест на ДНК проводят в крупных клиниках в больших городах, а вот забор биоматериала (кусочек ногтя, ватная палочка в пробирке, следы слюны) можно осуществить на месте, а потом отправить почтой. И хотя такой тест и не будет иметь юридической силы, результат окажется довольно точным.
В ходе чтения молекулы ее сперва выделяют, потом многократно копируют и нарезают на кусочки для анализа. Азотистые основания подкрашивают специальным светящимся красителем, который распознается при лазерном просвечивании. Методов анализа ДНК разработано уже несколько, они постоянно улучшаются за счет модернизации приборов и улучшения компьютерных программ. Это позволяет постепенно снижать стоимость такого анализа.
Наша ДНК – настоящий кладезь информации и, возможно, та самая волшебная палочка, которая позволит в будущем нам как минимум бороться с наследственными заболеваниями и, как максимум, модернизировать свое тело. И если бессмертие – спорный вопрос, которому природа противится, то в продлении нашей жизни и улучшении ее качества изучение ДНК может помочь.
В чем отличия
ДНК существенно отличается от РНК. Это касается структуры, выполняемых функций и прочих параметров.
История открытия
Первыми нуклеиновые кислоты описал швейцарский биохимик Фридрих Мишер. Это произошло еще в 1869 году. Из остатков клеток в гное ему удалось выделить вещество с содержанием азота и фосфора. Исследователь назвал его нуклеином. Он считал, что данный элемент присутствует лишь в клеточном ядре. Позднее небелковую часть вещества назвали нуклеиновой кислотой.
Способы выделения
Существует много методов выделения нуклеиновых кислот из натуральных источников, которые имеют определенные различия. При этом особое значение имеет эффективное отделение нуклеиновых кислот от белковых элементов и минимальный уровень фрагментации препаратов. Классический способ выделения ДНК был придуман еще в 1952 году. Он применяется и по сей день.
При этом клеточные стенки биоматериала разрушают стандартным способом, после чего обрабатывают анионным детергентом. При этом белки выпадают в осадок, а нуклеиновые кислоты попадают в водный раствор. ДНК можно осадить в форме геля. Для этого к ее солевому раствору аккуратно добавляют этанол.
Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность “Экономика предприятия”
Важно учитывать, что нуклеиновые кислоты деградируют под влиянием нуклеаз – особых ферментов. Потому при их выделении требуется обрабатывать инструменты и материалы специальными ингибиторами
Так, при выделении РНК часто применяют ингибитор DEPC.
Физические свойства
Нуклеиновые кислоты легко растворяются в воде. При этом они почти не растворяются в органических веществах. К другим особенностям относят чувствительность к влиянию температуры и критическим параметрам рН.
Молекулы ДНК с высокой молекулярной массой, которые выделены из натуральных источников, могут фрагментироваться под влиянием механических факторов – в частности, при перемешивании раствора.
Строение
ДНК включает дезоксирибозу и азотистые основания – тимин, цитозин, аденин и гуанин. В структуру молекулы обычно входит 2 полинуклеотидных цепи, которые направлены антипараллельно. РНК состоит из рибозы и азотистых оснований – гуанина, аденина, цитозина, урацила. По структуре полинуклеотидной цепочки молекула совпадает с ДНК.
Типы
РНК делится на такие типы:
- информационная – кодирует расположение аминокислот в белке;
- транспортная – доставляет аминокислоты к зоне выработки;
- рибосомальная – присутствует в составе рибосом, которые представляют собой место выработки белка.
В ДНК выделяют несколько уровней в структуре:
- первичная – это последовательность размещения нуклеотидов в цепи;
- вторичная – стабилизуется водородными связями между парами оснований;
- третичная – представляет собой суперсперализацию ДНК.
Роль
К основным функциям ДНК относят хранение и передачу генетической информации, а также матричный синтез РНК на ней. Главной задачей РНК считается выработка белка.
Биологическое значение
Молекулы РНК могут выполнять разные функции. РНК может передавать генетическую информацию. Другие молекулы РНК помогают переводить эту информацию в белки и регулировать гены . Кроме того, РНК также может выполнять каталитические функции, подобные ферменту . Поэтому РНК получают разные названия в зависимости от ее функции. Предшествующие строчные буквы указывают на различные типы РНК:
- МРНК , мессенджер РНК (Engl. Матричная РНК ) копирует информацию в гене , лежащий на ДНК и передает его на рибосомы , где с помощью этой информации, синтез белка может иметь место. В каждом случае три нуклеотида, лежащие рядом друг с другом в рамке считывания полинуклеотидной цепи, образуют кодон, с помощью которого можно четко определить конкретную аминокислоту, которая должна быть включена в белок . Эта связь была обнаружена в 1961 году Генрихом Маттеи и Маршаллом Уорреном Ниренбергом . Расшифровка генетического кода знаменует собой новое начало почти во всех биологических науках.
- Модифицированная нуклеозидами мРНК представляет собой синтетическую химически модифицированную рибонуклеиновую кислоту (мРНК), в которой отдельные нуклеозиды заменены другими естественно модифицированными нуклеозидами или синтетическими аналогами нуклеозидов. Он используется экспериментально или терапевтически.
Следующие классы РНК обычно называют некодирующими рибонуклеиновыми кислотами .
- АсРНК , антисмысловый РНК , используются для регулирования экспрессии генов .
- CircRNA , круговая РНК, участвует в регуляции путем связывания с миРНК.
- HnRNA , гетерогенная ядерная РНК происходит в ядре клеток эукариот и является предшественником зрелой мРНК, поэтому он часто упоминается как пре-мРНК (или пре-мРНК для мРНК предшественника).
- В микроРНК , микроРНК тесно связаны с киРНК и используются для регулирования клеточных процессов , таких. Б. Пролиферация и гибель клеток.
- В riboswitches используется для регуляции генов . Они могут иметь как активирующий, так и репрессивный эффект.
- В рибозимы являются каталитически активные молекулы РНК. Подобно ферментам, они катализируют химические реакции.
- РРНК , рибосомальный РНК , как и тРНК, не несет никакой генетической информации, но участвует в строительстве рибосомы и является также каталитический активной в образовании пептидной связи .
- Särna , само-ammuffling РНК , используют в вакцинах РНК продлить продолжительность действия.
- МиРНК , малых интерферирующих РНК , возникает из пути прохождения сигнала клетки, который кратко , как RNAi (РНК — интерференции). Здесь дцРНК (двухцепочечная РНК; английская двухцепочечная РНК) разбита на множество более мелких фрагментов длиной примерно 22 нуклеотида ферментом Dicer ( миРНК ) и включена в ферментный комплекс RISC ( комплекс РНК-индуцированного сайленсинга). ). С помощью встроенных фрагментов РНК RISC комплементарно связывается с ДНК, например B. участки генов, или мРНК, и могут их «выключать». siRNA в настоящее время (2006 г.) интенсивно исследуются на предмет их участия в различных клеточных процессах и заболеваниях.
- ShRNA используется для RNAi.
- SnoRNA , небольшой ядрышек РНК , можно найти в ядрышко , и тесно связанные с scaRNAs в органах Cajal .
- МяРНК , малая ядерная РНК в ядре эукариот отвечает за сращивания hnRNA на сплайсосома .
- LncRNA , длинные некодирующие РНК , длиннее , чем 200 нуклеотидов и , таким образом , отличаются от малых регуляторных РНК , таких как микроРНК и миРНК.
- ПиРНК , Piwi взаимодействующего РНК , являются 26-31 нуклеотидов в длине и , таким образом , отличаются от нескольких меньшего микроРНКа и миРНКа. Они образуют комплексы с белками PIWI, которые участвуют в эпигенетическом и посттранскрипционном молчании в половых клетках.
- ТРНК , перенос РНК , не кодирует какой — либо генетической информации, но служит в качестве вспомогательной молекулы в белка синтеза , поднимая одну аминокислоту из цитоплазмы и транспортировки его к рибосоме. ТРНК кодируется определенным геном РНК .
- TracrRNA , который играет важную роль в CRISPR / cas9 системы.
У большинства живых существ РНК играет подчиненную роль ДНК как носителя информации: здесь ДНК является постоянным носителем генетической информации, а РНК служит временным хранилищем. Только РНК-вирусы (большинство всех вирусов) используют РНК вместо ДНК в качестве постоянного носителя для хранения. Для таксономии вирусов различают следующие типы РНК:
* дцРНК : двухцепочечная РНК;
* ss (+) РНК : одноцепочечная РНК, используемая в качестве мРНК;
* ss (-) РНК : одноцепочечная РНК, которая служит матрицей для продукции мРНК.
Кроме того, некоторые вирусы используют РНК в качестве промежуточного звена репликации (например, гепаднавирусы ).
Рибонуклеиновые кислоты (РНК)
Структуры РНК сходны со структурами ДНК. РНК, как и ДНК, полинуклеотиды, но, в отличие от ДНК, молекула РНК одноцепочечная.
Как и в ДНК, структура РНК создается чередованием четырех типов нуклеотидов, но состав нуклеотидов РНК несколько отличается от нуклеотидов ДНК, т. е. углевод в РНК не дезоксирибоза, а рибоза, отсюда и название РНК — рибонуклеиновая кислота.
Кроме того, в РНК вместо азотистого основания тимина входит другое, близкое по строению основание, называемое урацилом (У).
В клетке имеется несколько видов РНК- Все они участвуют в синтезе белка.
Первый вид — транспортные РНК (т-РНК). Это самые маленькие по размерам РНК.
Они связывают аминокислоты и транспортируют их к месту синтеза белка. Второй вид — информационные РНК (и-РНК). По размерам они раз в 10 больше т-РНК. Их функция состоит в переносе информации о структуре белка от ДНК к месту синтеза белка.
Третий вид — рибосомные РНК (р-РНК). Они имеют наибольшие размеры молекулы и входят в состав рибосом.
Что такое ДНК
По научному
ДНК — это молекула, в которой закодирована генетическая информация. Структура ее была впервые открыта Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Она представляет собой двойную спираль, то есть состоит из двух длинных цепей, намотанных друг на друга. Эти спирали состоят из более мелких единиц, называемых нуклеотидами. В ДНК есть четыре различных типа нуклеотидов: аденин (A), тимин (T), цитозин (C) и гуанин (G). Порядок расположения нуклеотидов определяет информацию, доступную для создания и поддержания организма. Кроме того, ДНК отвечает за передачу генетической информации к одному поколению от другого.
Про одноцепочечную ДНК — это молекула, состоящая из двух спиралей, закрученных друг вокруг друга. Спиали удерживаются вместе водородными связями. Внешняя часть каждой спирали называется фосфатной группой.
О мусорной ДНК — это та, которая не используется для синтеза белка. Джанк-ДНК — это термин, используемый для описания частей последовательности, которые не кодируют белки. Считается, что эти последовательности являются регуляторными или не кодирующими и могут выполнять важные функции по контролю экспрессии генов или хромосомной организации.
По-простому
Молекула ДНК хранится генетическая информация. Ее структура была открыта Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Это двойная спираль, то есть две длинные спирали, обернутые друг вокруг друга. Эти спирали состоят из более мелких единиц, называемых нуклеотидами.
ДНК кодирует генетическую информацию. Порядок расположения нуклеотидов в ДНК определяет, какие белки будут произведены. Последовательности нуклеотидов переводится в очерёдность аминокислот, которые затем образуют белок.
Молекула ДНК содержит генетическую информацию организма. Порядок расположения нуклеотидов в ней определяет информацию, доступную для создания и поддержания организма. Кроме того, она отвечает за передачу генетической информации к одному поколению от другого.
История открытия ДНК — дезоксирибонуклеиновой кислоты
Открытие ДНК было сделано дважды: Иоганном Фридрихом Мишером в 1869 году и Джеймсом Уотсоном и Фрэнсисом Криком в 1953 году. Это большая молекула, состоящая из азота и фосфора, которая содержится в клетках. Первоначально она называлась нуклеином, однако были обнаружены ее кислотные свойства, и она была переименована в нуклеиновую кислоту. Изначально, как считали ученые, основная функция нуклеиновой кислоты была для хранения фосфора, но с тех пор ученые обнаружили, что они играют и множество других важных ролей в организме.
В первый раз ДНК открыл Иоганн Фридрих Мишер в 1869 году. Это был швейцарский ученый, который изучал клетки гноя из хирургических повязок. Он обнаружил, что содержится в ядре клетки.
Второе открытие структуры ДНК в 1953 году сделали Джеймс Уотсон и Фрэнсис Крик. Это стало вехой в нашем понимании живых существ. Их работа показала, что представляет собой двухцепочечная молекула ДНК, состоящую из двух длинных цепей нуклеотидов. Эти цепи наматываются друг на друга, так и образуется двойная спираль. Нуклеотиды в ней расположены в определенном порядке, и этот порядок определяет последовательности аминокислот в белках. Белки отвечают за структуру и функционирование нашего организма.
Догма о ДНК гласит, что она является местом хранения генетической информации и может служить матрицей для синтеза РНК, рибонуклеиновой кислоты.
Дезоксирибонуклеиновая кислота (ДНК)
Роль хранителя наследственной информации у всех клеток — животных и растительных — принадлежит ДНК.
Схема строения ДНК изображена на рисунке 74. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити. Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше — она достигает сотен тысяч нанометров. Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100 — 200 нм.
Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул. Молекулярная масса ДНК соответственно исключительно велика — она достигает десятков и даже сотен миллионов.
Рисунок 74. Схема строения ДНК (двойная спираль).
Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды. Нуклеотид — это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида — дезоксирибозы) и фосфорной кислоты.
ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке рисунке 75. Как видно, у всех четырех нуклеотидов углевод и фосфорная кислота одинаковы.
Четыре нуклеотида, из которых построены все ДНК живой природы. Рисунок 76. Соединение нуклеотидов в полинуклеотидную цепь.
Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют; нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц).
По размерам А равен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.
Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью — рисунок 76.
Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.
Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы удерживают их рядом.
Представление об этом дает рисунок рисунок 77, на котором изображен небольшой участок двойной спирали.
Рисунок 77. Участок двойной спирали ДНК.
Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи — всегда Ц.
Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое по всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т).
В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А. Если на каком-нибудь участке одной цепи ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц, Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г.
Таким образом, если известен порядок следования нуклеотидов в одной цепи, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.
ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах.
В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.
Резюме по ДНК и РНК
Ты нуклеиновые кислоты они представляют собой макромолекулы, образованные объединением фосфорной кислоты с пентозой, сахара с пятью атомами углерода, а также азотистых, пиримидиновых (цитозин, тимин и урацил) и пуриновых (аденин и гуанин) оснований.
Две основные группы этих соединений – дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). См. Ниже информацию о каждом из них.
ДНК: что это такое, структура и функции
О ДНК это молекула, которая передает закодированную генетическую информацию от вида к его потомкам. Он определяет все характеристики человека, и его состав не меняется от одной области тела к другой, ни с возрастом, ни с окружающей средой.
В 1953 году Джеймс Уотсон и Фрэнсис Крик представили в статье в журнале природа, модель двойной спирали для структуры ДНК.
Описание спиральной модели Уотсоном и Криком было основано на исследовании азотистых оснований Эрвином Чаргаффом, которому с помощью хроматографии удалось идентифицировать и количественно определить их.
Изображения и данные дифракции рентгеновских лучей получены Розалинд Франклин, которая работала с Морисом Уилкинсом в Королевский колледж Лондона, были решающими для пары достичь представленной модели. Историческая «Фото 51» была решающим доказательством этого великого открытия.
В 1962 году Уотсон, Крик и Уилкинс получили Нобелевскую премию по медицине за описанную структуру. Франклин, умерший четырьмя годами ранее, не получил признания за свою работу.
Структура ДНК
THE состав ДНК формируется:
- Фосфатный скелет (P) и сахар (D) чередуются, складываясь в двойную спираль.
- Азотистые основания (A, T, G и C) связаны водородными связями, которые выступают из цепи.
- Нуклеотиды соединены фосфодиэфирными связями.
В функции ДНК:
- Передача генетической информации: нуклеотидные последовательности, принадлежащие цепям ДНК, кодируют информацию. Эта информация передается от материнской клетки к дочерним клеткам в процессе репликации ДНК.
- Кодирование белков: информация, которую несет ДНК, используется для производства белков, при этом генетический код отвечает за дифференциацию аминокислот, из которых они состоят.
- Синтез РНК: транскрипция ДНК производит РНК, которая используется для создания белков посредством трансляции.
Перед делением клеток ДНК дублируется, так что полученные клетки получают одинаковое количество генетического материала. Разрушение молекулы осуществляется ферментом ДНК-полимеразой, расщепляя две цепи и превращаясь в две новые молекулы ДНК.
Также читайте оРепликация ДНК.
РНК: что это такое, структура и функции
О РНК представляет собой полимер, элементы рибонуклеотидной цепи которого ковалентно связаны.
Это элемент между ДНК и производством белка, то есть ДНК перестраивается с образованием РНК, которая, в свою очередь, кодирует производство белка.
синтез белка
THE состав РНК образуется:
- Рибонуклеотиды: рибоза, фосфат и азотистые основания.
- Пуриновые основания: аденин (А) и гуанин (G).
- Пиримидные основания: цитозин (C) и урацил (U).
В функции РНК относятся к их типам. Они:
- Рибосомная РНК (рРНК): образование рибосом, которые связывают аминокислоты в белки.
- Информационная РНК (мРНК): передача генетического сообщения рибосомам, указывающего, какие аминокислоты и какая последовательность должны составлять белки.
- Транспортная РНК (тРНК): направляет аминокислоты внутри клетки к месту синтеза белка.
Для синтеза белка некоторые участки ДНК транскрибируются в информационную РНК, которая переносит информацию на рибосому. РНК-транспортер отвечает за доставку аминокислот для производства белка. Рибосома производит полипептидную цепь согласно расшифровке полученного сообщения.
Узнать больше:
- Синтез белка
- Генетический код
- Упражнения ДНК
Типы РНК
В зависимости от функций, выполняемых в организме, принято выделять несколько типов рибонуклеиновой кислоты. Каждый из них имеет своё специальное обозначение.
Различные типы этого вещества и соответствующие функции РНК для наглядности можно представить в виде таблицы:
Название | Условное обозначение | Особенности |
Информационная (матричная) | иРНК (мРНК) | Из всей рибонуклеиновой кислоты, содержащейся в клетке, она составляет около 5%. Содержит и передаёт информацию о первичной структуре белка. Созревая, становится матрицей для синтеза полипептидной белковой молекулы. Молекулы информационной РНК присутствуют в клетке до тех пор, пока синтезируется необходимая белковая молекула. После того как матрица становится не нужна, клетка ее разрушает. |
Рибосомальная | рРНК | Синтез рибосомальной РНК осуществляется в ядрышке. Её молекулы имеют довольно крупные габариты, состоят из из большого количества нуклеотидов — от 3000 до 5000. Составляя 80−85% всей РНК клетки, имеет несколько разновидностей, которые входят в состав рибосом, отличаясь друг от друга длиной цепи, выполняемыми функциями, а также вторичной и третичной структурой. Молекулы рибосомальной РНК считывают информацию, закодированную информационной молекулой и способствуют образованию связей между аминокислотами в белковой цепи. |
Транспортная | тРНК | Эта разновидность рибонуклеиновой кислоты синтезируется в ядре клетки на основе матрицы ДНК, после чего выходит в цитоплазму. Характерной чертой транспортной РНК является небольшой по меркам полимерных веществ размер молекулы (по сравнению с молекулами того же вещества, которым присущи другие функции). Она может содержать около 80 мономеров. Функция этого вещества: транспорт аминокислот, являющихся строительными материалами для протеинов к месту сборки белковой молекулы. Если представить пространственную структуру молекулы нуклеиновой кислоты в виде фигуры, напоминающей листок клевера, то транспортируемая аминокислота присоединяется к его черешку. Молекула транспортной рибонуклеиновой кислоты неуниверсальна: для доставки к рибосоме каждого вида аминокислот необходима своя разновидность транспортной РНК. Всего таких видов известно около 60. |
Указанные в таблице типы РНК являются основными. Кроме них существуют и другие разновидности этого вещества. Все они в совокупности составляют единую систему, значение которой крайне велико: она направлена на считывание и воспроизведение наследственной информации через синтез белковых структур.
Существует ещё одна классификации РНК; согласно ей, выделяют следующие разновидности:
- Ядерная. Рапространение — ядро эукариотических клеток. Молекула собирается полимеразой 2 или 3 типов. После сборки выходит в цитоплазму клетки, где происходит созревание; потом возвращается в ядро. Участвует в процессе созревания матричной РНК. В цепи такой нуклеиновой кислоты находится много уридиновых нуклеотидов. Имеется и малый (ядрышковый) подтип.
- Цитоплазматическая. Находится под влиянием ядерной разновидности нуклеиновой кислоты. Функция — участие в антителообразовании в зрелых плазматических клетках.
- Митохондриальная. В отличие от ядерной, располагается в митохондриях.
- Пластидная. Кодирует гены, обеспечивающие процессы транскрипции и трансляции.