Провода и их классификация
В ГОСТе 15845-80 объясняется, что такое провод. Кабельное соединение, которое содержит одну или группу проволок (или жилок), имеющих легкую оболочку не из металлических сплавов, называется проводом. Также этот технический регламент характеризует провод по способу прокладки – он не может монтироваться под землей, это является первым отличием кабеля от провода.
Провода классифицируются по ряду признаков и свойств:
- тип материала и характеристики изоляционного слоя;
- материал изготовления проволок;
- диаметр (сечение) изделия;
- проводимость и прочие.
Эти признаки предопределяют сферу применения проводниковой продукции. Провода могут быть:
- автомобильными;
- обмоточными;
- изолированными и неизолированными (последние применяются в воздушных ЛЭП);
- соединительными;
- монтажными и прочими.
Важно!
Более подробно про качественные и количественные характеристики, классификацию изделий электротехнического назначения, в том числе проводов и кабелей, можно узнать из ГОСТа 15845-80 и международного стандарта ISO11801-2002
Таблица проводников, диэлектриков и полупроводников (3 часть):
61 | Прометий | Pm | проводник |
62 | Самарий | Sm | проводник |
63 | Европий | Eu | проводник |
64 | Гадолиний | Gd | проводник |
65 | Тербий | Tb | проводник |
66 | Диспрозий | Dy | проводник |
67 | Гольмий | Ho | проводник |
68 | Эрбий | Er | проводник |
69 | Тулий | Tm | проводник |
70 | Иттербий | Yb | проводник |
71 | Лютеций | Lu | проводник |
72 | Гафний | Hf | проводник |
73 | Тантал | Ta | проводник |
74 | Вольфрам | W | проводник |
75 | Рений | Re | проводник |
76 | Осмий | Os | проводник |
77 | Иридий | Ir | проводник |
78 | Платина | Pt | проводник |
79 | Золото | Au | проводник |
80 | Ртуть | Hg | проводник |
81 | Таллий | Tl | проводник |
82 | Свинец | Pb | проводник |
83 | Висмут | Bi | проводник |
84 | Полоний | Po | проводник |
85 | Астат | At | |
86 | Радон | Rn | |
87 | Франций | Fr | |
88 | Радий | Ra | проводник |
89 | Актиний | Ac | |
90 | Торий | Th | проводник |
Отличия кабеля от провода
По внешнему виду электрокабеля и провода имеют определенное сходство, однако различия между ними есть, которые отлично видны профессионалу.
Изоляционный слой жил
Основным отличием между рассматриваемыми изделиями является присутствие в кабеле отдельного изоляционного слоя каждой токопроводящей жилы. В то время как провод или скрутка проводников имеет общую оболочку или же не имеет ее вообще. Это разграничение описывается в ГОСТе 15845-80.
Таким образом, если каждый в отдельности проводник имеет собственную изоляцию, то изделие именуется кабелем. А когда изоляция отсутствует, или некоторое число неизолированных проводниковых элементов (проволоки) заключены в общую изоляцию, то изделие называется проводом.
Маркирование изделий
Отличить кабельную продукцию от обычных проводов можно также посредством правильного чтения обозначений. Каждое электротехническое изделие имеет свою маркировку, которая выражается буквенными, цифровыми символами и цветом.
Маркировка проводников может рассказать не только о том, к какому виду они относятся, но и о материале изготовления изоляционной оболочки и жилы, количестве и диаметре жил, сфере применения и прочую информацию.
Например, если изделие имеет клеймо АВВГнг 3х2,5, то оно расшифровывается следующим образом:
- А – жила из алюминия;
- В – изоляционный слой жил из ПВХ-материала (поливинилхлорида);
- В – общая изоляционная оболочка также изготовлена из ПВХ;
- Г – отсутствие брони;
- нг – изделие не поддерживает горение;
- 3х2,5 – три жилы сечением 2,5 мм2.
Из расшифровки видно, что каждая жила имеет свою изоляцию и общую оболочку, соответственно, это изделие – кабель. Наличие в маркировке символа «Э» означает, что кабель имеет экран, Р – защиту из резинового материала, Б – броню от горения и агрессивных сред, Ш – защитная оболочка кабеля представлена в виде шланга и так далее.
Маркирование проводов отличается от кабелей лишь другим значением некоторых символов. Например, если перед человеком лежит продукция марки ПуГВ, то это установочный провод, имеющий изоляцию из ПВХ-материала и отличающийся повышенными характеристиками гибкости.
Важно!
Из-за огромного количества всевозможных комбинаций символов в маркировке электрокабельных продуктов прочесть ее иногда бывает затруднительно. В таких случаях рекомендуется прибегнуть к помощи специальных справочников или ресурсов в интернете
Условия использования
Кабель нашел более широкое употребление в специальных условиях в отличие от провода, так как имеет усиленную защиту от разнообразных повреждений. Все подземные и подводные коммуникации выполняются только им. Также они прокладываются в пожароопасных объектах, шахтах, помещениях с высокой коррозийной активностью и прочих.
Провода из-за меньшей защиты применяются в основном внутри электротехнических устройств, электрораспределителях, в качестве квартирной проводки – за их пределами рекомендуется применять токопроводящие шины или кабеля.
Интересно знать.
Кабельная продукция имеет более длительный срок эксплуатации и большую пропускную способность (выше сила и напряжения пропускаемого тока) из-за многослойной изоляции, возможного наличия экранов и слоев брони.
Крайне важно отличать кабеля от проводов, так как неправильное их применение небезопасно. Зная вышеописанные понятия и различия между кабельной и проводниковой продукцией, вопрос «провод это или кабель» точно не возникнет
Описание диэлектриков
Диэлектрики также принято называть электроизоляционными веществами.
Все электроизоляционные вещества имеют следующую классификацию:
- В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
- В зависимости от способы получения — естественными и синтетическими.
- В зависимости от химического состава – органическими и неорганическими.
- В зависимости от строения молекул – нейтральными и полярными.
К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле. Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.
В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.
Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.
Таблица: чем отличаются проводники и диэлектрики?
Диэлектрик | ||
Наличие свободных электронов | Присутствуют в большом количестве | Отсутствуют, или присутствуют, но очень мало |
Способность материалов проводить электрический ток | Хорошо проводит | Не проводит, или ток незначительно мал |
Что происходит при увеличении приложенного напряжение | Ток, проходящий через проводник, увеличивается согласно закону Ома | Ток, проходящий через диэлектрик изменяется незначительно и, при достижения определенного значения, происходит электрический пробой |
Материалы | Золото, серебро, медь и ее сплавы, алюминий и сплавы, железо и другие | Эбонит, фторопласт, резина, слюда, различные пластмассы, полиэтилен и другие материалы |
Сопротивление | от 10 -5 до 10 -8 степени Ом/м | 10 10 – 10 16 Ом/м |
Влияние посторонних примесей на сопротивление материала | Примеси ухудшают свойство проводимости материала, что ухудшает его свойства | Примеси улучшают проводимость материала, что ухудшает его свойства |
Изменение свойств при изменении температуры окружающей среды | При увеличении температуры – сопротивление увеличивается, при снижении – уменьшается. При очень низких температурах – сверхпроводимость. | При увеличении температуры – сопротивление уменьшается. |
Описание диэлектриков
Диэлектрики также принято называть электроизоляционными веществами.
Все электроизоляционные вещества имеют следующую классификацию:
- В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
- В зависимости от способы получения — естественными и синтетическими.
- В зависимости от химического состава – органическими и неорганическими.
- В зависимости от строения молекул – нейтральными и полярными.
К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле. Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.
Пример диэлектрика
В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.
Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.
Описание проводников
Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:
- Металлы (медь, алюминий, серебро) и их сплавы.
- Электролиты (водный раствор соли, кислоты).
В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.
Параллельное соединение проводников
Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах
Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей
Движиение электрического тока
В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.
Чем отличаются диэлектрики от проводников и полупроводников
Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:
Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.
И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.
В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.
В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ
Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.
В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.
Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих — тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток — поляризационными процессами до момента установления равновесия в системе.
Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.
При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.
Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.
Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.
Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.
Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ — угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.
Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.
Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.
Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).
И в конце таблица диэлектриков, как же без нее.
В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.
Main Differences Between Conductor and Semiconductor
- The level of conductivity in conductors is high, whereas, in the case of semiconductors, it is moderate, i.e., neither too high nor too low.
- The resistivity level in conductors is low, but semiconductors have moderate resistivity.
- The current flow in conductors happens because of the free flow of electrons, whereas in semiconductors, the latter happens because of free electrons and holes.
- The conductors are formed by metallic bonding, whereas semiconductors are formed by covalent bonding.
- In the outermost shell, the valence electron for conductors is just one, whereas, for semiconductors, it is four.
- Examples of conductors are Gold, Silver, Aluminium, and Copper, whereas semiconductors are silicon, gallium arsenide, and germanium.
References
- https://aip.scitation.org/doi/abs/10.1063/1.4895102
- https://books.google.com/books?hl=en&lr=&id=Ty5Ymlg_Mh0C&oi=fnd&pg=PA3&dq=conductor+and+semiconductor+materials&ots=K7X8yGMhXm&sig=lti9TC1YePeXg-Vwetak-z7KAE4
Home – Science – Conductor vs Semiconductor: Difference and Comparison
Last Updated : 11 June, 2023
One request?
I’ve put so much effort writing this blog post to provide value to you. It’ll be very helpful for me, if you consider sharing it on social media or with your friends/family. SHARING IS ️
Органические полупроводники
Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (CH2)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.
Разнообразие полупроводниковых материалов
Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.
Свойства диэлектриков
Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов
, способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.
Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.
Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.
Что такое 1 Ампер в системе СИ
Сила тока в 1 Ампер была определена в системе СИ с помощью силы взаимного действия двух проводников с током.
Рассмотрим два тонких проводника (рис. 9). Каждый проводник имеет бесконечную длину. Расположим их в вакууме параллельно на расстоянии 1 метр один от другого.
Рис. 9. Эталон силы тока 1 ампер в системе СИ
Выделим на каждом проводнике кусочек длиной 1 метр.
Если проводники взаимодействуют с силой \(\large 2 \cdot 10^{-7} \) Ньютона, приходящейся на каждый метр их длины, то по каждому из них течет постоянный ток 1 Ампер.
Ампер – это основная единица в системе СИ. А Кулон – величина, определяемая с помощью Ампера.
Принципы проводимости проводников
Проводимость проводников основана на движении свободных электронов внутри материала. Здесь важную роль играют свободные электроны, которые находятся в валентной зоне и не связаны с атомами.
Основные принципы проводимости проводников следующие:
1. Наличие свободных электронов: В проводниках, таких как медь или алюминий, валентная зона частично заполнена электронами, которые могут свободно двигаться. Это обеспечивает возможность электронного транспорта и проводимость.
2. Перемещение электронов: Постоянное воздействие внешнего электрического поля позволяет свободным электронам перемещаться вдоль проводника. Этот процесс называется дрейфом электронов. Чем выше плотность свободных электронов и ниже сопротивление проводника, тем лучше его проводящие свойства.
3. Столкновения электронов: В процессе движения свободные электроны могут сталкиваться с другими электронами или атомами вещества. Эти столкновения вызывают сопротивление в проводнике. Сопротивление обусловливает потери энергии и тепла, а также снижает эффективность проводимости.
4. Температурная зависимость: Проводимость проводников зависит от их температуры. При повышении температуры свободные электроны сталкиваются чаще, что увеличивает сопротивление проводника и снижает его проводимость.
Проводники обладают очень высокой проводимостью и широко используются в электрических и электронных системах, включая провода, контакты, электроды и другие элементы.
И наконец мы дошли до полупроводников
Свои свойства полупроводник имеет потому, что в его структуре очень мало частиц, являющихся свободными носителями, а может быть такое, что их там вовсе нет. Но, стоит повлиять на них определенной энергией — и они появляются и активно двигаются.
Энергия может быть не только электрической, также можно воздействовать тепловой энергией, или различными излучениями. Например, свободно движущиеся элементы появляются при влиянии излучения в УФ-Спектре.
Материалами с такими свойствами являются германий, кремний, так же это может быть смешение арсенида и гелия, мышьяк, селен и прочие.
Применение полупроводников может быть различное. Из данного материала делают микросхемы, светодиоды, транзисторы, диоды и многое другое.
Для того, чтоб более подробно объяснить работу полупроводника, применим к нему так называемую зонную теорию. Упомянутая теория объясняет существование или неимение свободных заряженных частиц в отношении конкретных энергетических уровней.
Энергетический уровень (слой) — это число простых частиц, таких как молекул, атомов, то есть электронов. Данный показатель измеряется в Электронвольтах (ЭВ).
Следует обратить внимание на то, что слои проводника составляют непрерывную диаграмму от зоны валентности и до зоны проводимости. Если эти две зоны осуществляют накладку друг на друга, то возникает зона перекрытия
В соответствии с влиянием некоторых влияний, например электрических полей, температурного режима и прочего, число электронов может меняться.
Исходя из вышеописанных процессов электроны при минимальной энергетическом воздействии начинают движение в проводнике.
Полупроводники между двумя вышеупомянутыми зонами имеют еще зону запрещенную. Величина данной зоны показывает количество той энергии, которой будет достаточно для проведения тока.
Диэлектрики по структуре похожи на полупроводники, но их защитный шар намного больше благодаря внутренним связям материала.
Мы рассказали о главных свойствах проводников, полупроводников и диэлектриков. Можно сделать вывод, что отличаются они друг от друга своей проводимостью тока. Именно из-за этого у каждого материала есть своя зона применения.
Так, проводники применяются там, где нужна стопроцентная проводимость тока.
Использование диэлектриков приходится на изготовление различной изоляции токопроводящих участков.
Ну, а полупроводники активно применяют в электронике.
Думаем, данная статья раскрыла перед вами все нюансы работы проводников, диэлектриков и полупроводников, их основные отличия и сферы применения.
Зонная теория
Зонная теория твердых тел — это теория движения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика считает, что свободные электроны могут иметь любую энергию, спектр которой непрерывен.
Электроны изолированных атомов обладают определенной энергией. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, полосы зон энергетических уровней образуются из энергетических уровней отдельных атомов в твердом теле.
Верхняя заполненная зона, валентная зона, соответствует энергетическому уровню валентных электронов во внешней оболочке. Ближе всего к этому незаполненный жгут проводов. Взаимное расположение обеих зон определяет процессы, происходящие в твердом теле, и материалы классифицируют по группам: проводники, полупроводники, диэлектрические вещества.
Классификация зон
В проводниках зона проводимости и валентная зона объединены. Образовавшаяся зона перекрытия позволяет электрону свободно двигаться, когда он получает даже небольшое количество энергии.
В полупроводниках полосы не перекрываются. Расстояние между ними, называемое шириной запрещенной зоны, меньше 2,0 эВ. При нулевой температуре электронов в зоне проводимости нет, а валентная зона заполнена ими. При повышении температуры часть электронов выбрасывается в зону проводимости из-за теплового движения. Полупроводник становится электропроводным.
В диэлектриках полосы не перекрываются, как и в полупроводниках. Ширина запрещенной зоны здесь составляет более 2,0 эВ. Для перевода электронов из валентной зоны в зону проводимости необходимо значительно повысить температуру. При низких температурах электрический ток не проводится.
Двухэлементные соединения
Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.
Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.
Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.
Собственная проводимость полупроводника
Проводимость любого вещества определяется наличием и подвижностью носителей заряда в этом веществе и рассчитывается по специальным формулам. Практически во всех твердых веществах проводимость обеспечивается свободными электронами. Однако в полупроводниках она имеет свои особенности.
Рассмотрим кристалл типичного полупроводника — кремния.
Кремний четырехвалентен, а энергетически устойчивое число внешних валентных электронов — восемь. В итоге кремнию «энергетически выгодно» создать четыре двухэлектронных связи с соседними атомами.
Рис. 1. Строение полупроводника кремния.
При повышении температуры энергии некоторых электронов начинает хватать, чтобы разорвать связь. В кристалле появляются свободные отрицательные носители. Они обеспечивают проводимость, которая называется электронной.
Одновременно в кристаллической решетке оказываются связи с недостатком электронов. Такая связь называется дыркой. Поскольку электрон в составе связи при подлете к атому может продолжить движение по любой из четырех связей, то дырка в любой момент может заполниться электроном с образованием дырки в соседней связи. Такое событие может рассматриваться, как движение дырки. А поскольку дырка представляет собой недостаток электронов, она движется как положительно заряженный носитель. Такая проводимость называется дырочной.
Электронная и дырочная проводимость, появляющаяся в результате того, что электроны разрывают связи, называется собственной проводимостью проводника.
Магнитные полупроводники
Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-xMnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации
Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения
Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.
Вывод
Мы, люди, используем в повседневной жизни как проводники, так и полупроводники.
Проводники, которые можно найти в повседневных ситуациях, подобны термометру, который использует ртуть для измерения температуры тела. Затем сковорода, сделанная из железа, использует свои характеристики проводимости для передачи тепла от пламени к пище.
Однако полупроводники используются менее очевидным образом по сравнению с проводниками. Они используются как транзисторы от технологии очень крупномасштабной интеграции (СБИС) до крошечных, используемых почти во всех беспроводных гаджетах, которые мы используем. Полупроводники также используются для производства солнечных элементов, состоящих из полупроводников p-типа и n-типа.