в

Разница между позиционной и непозиционной системой счисления

Зачем числа?

“Все есть число”, — говорили пифагорийцы (ученики древнегреческого математика Пифагора). Значит всё можно обозначить числом.

Так как многие предметы внешнего мира имеет схожую форму, возникла потребность их сосчитать. Например, сколько коров в стаде. Сколько добыто рыб, или зайцев. Т.е. число и арифметика возникли из практической деятельности человека.

Так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.

Число – это обобщение, так как разными числами можно подсчитать разные предметы.

Цифры – это значки, с помощью которых записывают числа. Система счисления или нумерация – это способ записи чисел с помощью цифр.

Двоичная система счисления

В компьютерной технике очень часто используется двоичная система счисления. Такую систему очень легко реализовать в электронике (полупроводниковые транзисторы и микросхемы), так как для неё требуется всего два устойчивых состояния (0 и 1).

Двоичная система счисления может быть непозиционной и позиционной системой. В ней используется две цифры: 0 и 1. В реальном устройстве это может быть реализовано присутствием какого-либо физического явления или его отсутствием. Например: есть электрический заряд или его нет, есть напряжение или нет, есть ток или нет, есть сопротивление или нет, отражает свет или нет, намагничено или не намагничено, есть отверстие или нет и т.п.

Мы уже знаем, как переводить числа в различные системы счисления. Посмотрим, как это происходит с двоичной системой счисления. Переведём число из двоичной системы счисления в десятичную.

101010102=1⋅27+⋅26+1⋅25+⋅24+1⋅23+⋅22+1⋅21+⋅2=128+32+8+2=170{\displaystyle 10101010_{2}=1\cdot 2^{7}+0\cdot 2^{6}+1\cdot 2^{5}+0\cdot 2^{4}+1\cdot 2^{3}+0\cdot 2^{2}+1\cdot 2^{1}+0\cdot 2^{0}=128+32+8+2=170};

Вы это можете проверить на программе-калькуляторе (gcalctool в gnome, Kcalc в KDE, или калькулятор в Windows). Он умеет производить расчёты в двоичной, восьмеричной и шестнадцатиричной системах счисления. Теперь вы знаете, как он это проделывает. Если вы захотите посвятить свою жизнь программированию, то вам часто придётся работать со степенями двойки. Ниже представлена таблица:

СтепеньЗначение
1
12
24
38
416
532
664
7128
8256
9512
101024
112048
124096
138192
1416384
1532768
1665536

Произведём обратное преобразование. Чтобы преобразовать число в десятичном виде к двоичному, нам нужно будет делить всё время на два и смотреть на остаток от деления. Возьмём число 33.

  • 33 : 2 = 16 остаток 1;
  • 16 : 2 = 8 остаток 0;
  • 8 : 2 = 4 остаток 0;
  • 4 : 2 = 2 остаток 0;
  • 2 : 2 = 1 остаток 0;
  • 1 : 2 = 0 остаток 1;

Получили 1000012{\displaystyle 100001_{2}}.

Возьмём число 55. Посмотрим, что получится.

  • 55 : 2 = 27 остаток 1;
  • 27 : 2 = 13 остаток 1;
  • 13 : 2 = 6 остаток 1;
  • 6 : 2 = 3 остаток 0;
  • 3 : 2 = 1 остаток 1;
  • 1 : 2 = 0 остаток 1.

Получили 1101112{\displaystyle 110111_{2}}.

Ниже приведены ещё примеры со сложением, вычитанием, умножением и делением.

Сложение:

 1001
 1010
 ----
10011

Вычитание:

1110
0101
----
1001

Умножение:

   1110
   0101
   ----
   1110
  0000
 1110
0000 
-------
1000110

Деление:

1000110|101
 101   -----
----   0001110 
  111
  101
  ---
   101
   101
   ---
     00

Программа двоичного представления десятичного числа
(Написана на Си)

#include<stdio.h>
#include<conio.h>

voiddv(unsigned);

intmain(intargc,char**argv)
{
unsignedx;
printf("Vvedite chislo > ");
scanf("%d",&x);
dv(x);

getch();
return;
}

voiddv(unsignedx)
{
unsignedmask=1,i;
mask<<=sizeof(unsigned)*8-1;
for(i=1;i<=sizeof(unsigned)*8;i++)
{
printf("%c",x&mask?'1''0');
x<<=1;
if(!(i%8))
printf(" ");
}
printf("\n");
}

Вавилонская десятеричная / шестидесятеричная

В древнем Вавилоне примерно во IIтысячелетие до нашей эры была такая система счисления – числа менее 60 обозначались с помощью двух знаков: для единицы, и для десятка. Они имели клинообразный вид, так как вавилоняне писали на глиняных табличках палочками треугольной формы. Эти знаки повторялись нужное число раз, например

– 3; – 20; – 32;  – 59

Числа больше 60 записывались по разрядам, с небольшими пробелами между ними:

Так записывается число 302, то есть 5*60+2.

1*60*60+2*60+5 = 3725

А это 1*60*60+2*60+5 = 3725.

Но представление не которых чисел в этой системе будет одинаковым, например, число 302, может быть и равно и 5*60*60 + 2 = 18002. Так как нет значка для обозначения нуля.

Лишь в Vвеке до нашей эры был введен особый знак  – наклонный клин для обозначения пропущенных разрядов, игравший роль нуля.

2*60*60+3 = 7203

это запись числа 7203 (2*60*60+3).

Однако отсутствие низшего разряда не обозначалось, и поэтому число 180 = 3*60 записывалось так , а обозначать эта запись могла и 3, и 180, и 10800 (3*60*60), и т. д.

Считается, что десятичная система была у шумеров, а после того как их завоевали семиты, их система была приспособлена под  шестидесятеричную систему семитов.

Шестидесятеричная запись целых чисел не получила широкого распространения за пределами Ассиро-вавилонского царства, но шестидесятеричные дроби применяются до сих пор при измерении времени. Например, одна минута = 60 секунд, один час = 60 минут.

Разница в арифметических операциях

Позиционные и непозиционные системы счисления имеют различия в выполнении арифметических операций. В позиционной системе счисления арифметические операции выполняются путем простого сложения и умножения чисел, а в непозиционной системе счисления операции сложения и умножения требуют особых алгоритмических процедур.

В позиционной системе счисления результат арифметической операции зависит от позиции цифр в числе. Например, в десятичной системе счисления, сложение чисел 13 и 24 происходит позиционно — сначала складываются цифры единиц, а затем цифры десятков, давая результат 37.

В непозиционной системе счисления арифметические операции сложения и умножения требуют использования специальных алгоритмов. Например, в римской системе счисления, сложение чисел X (десять) и V (пять) обрабатывается как особый случай, требующий знания правил их комбинирования для получения правильного результата XV (пятнадцать).

Таким образом, разница в арифметических операциях между позиционной и непозиционной системами счисления заключается в простоте и независимости от позиции цифр в числе в позиционной системе, а также в сложности и требовании знаний правил комбинирования цифр в непозиционной системе.

Основание системы счисления

Основание системы счисления – это число, на основе которого ведется счет. Например, если основание системы счисления равно десяти, то минимальная счетная группа этой системы счисления равна десяти, это значит, что, сосчитав какие-либо предметы до десяти, мы считаем снова с единицы, но при этом запоминаем число десятков. В нашей «арабской» системе основанием является число десять. Есть системы счисления и с другим основанием. Это такие системы счисления как пятеричная, двенадцатеричная, двадцатеричная, шестидесятеричная.

Десятеричная и пятеричная система возникла от того факта, что на одной руке человека пять пальцев, на обоих руках 10 пальцев.

Так проще считать. Если добавить пальцы и на ногах, то будет понятная и двадцатеричная система. Происхождение двенадцатеричной системы тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев.

Если двенадцать умножить на пять получим шестидесятеричную систему. Например, на одной руке загибаем пальцы, пока не получим, что отсчитано, пять штук, а на другой руке прикосновением большого пальца к суставам остальных четырех указываем количество этих пятерок.

В некоторых системах счисления используются для обозначения цифр буквы, такие системы счисления называются алфавитными.

Итак, бывают непозиционные (аддитивные) и позиционные (мультипликативные), пятеричные, десятичные, двенадцатеричные, двадцатеричные, шестидесятеричные и алфавитные системы счисления.

Вначале рассмотрим непозиционные (аддитивные) системы счисления.

О преобразованиях

При работе с любой системой счисления нужно понимать, как перевести число из одного «варианта» в другой. Эти навыки пригодятся всем, кто планирует углубиться в IT.

В десятичную

Первый вариант — привести любую «систему» ​​к «десятичной форме». Тот, который известен всем пользователям.

Пусть задано число a1a2a3, где основанием является b, тогда вы должны умножить каждую цифру на bn. N будет цифрой. Формула перевода будет такой: (a1a2a3)b=(a1*b2+a2*b1+a3*b0)10.

Из десятичной

Из десятичной системы счисления можно преобразовать число в любое другое. Здесь стоит разделить процесс на образование дробной и целочисленной частей. В противном случае желаемый результат не будет достигнут.

Что касается всего раздела, действовать нужно так:

  1. Весь раздел последовательно разбит на основы новой системы. Это делается до тех пор, пока число не станет равным нулю.
  2. Полученные остатки и есть номера искомых компонент.
  3. Зачисление осуществляется от последнего остатка к первому.

Дробь преобразуется следующим образом:

  1. Соответствующий элемент умножается на базу системы, в которую производится перевод.
  2. Вся часть разведена.
  3. Умножьте дробь на основание новой. Делайте это до тех пор, пока он не станет равным 0.
  4. Запишите результат умножения. Делается это в том порядке, который соответствует квитанции.

Пример — 1510 при переводе в восьмеричную систему счисления это 178. Получилось так: 15/8 = 1, остаток — 7, а также 1/8 = 0, остаток 1.

Из двоичной в восьмеричную и шестнадцатеричную

Чтобы преобразовать 1 a (число) из двоичной системы в 8, вам нужно:

  1. Разделите его на группы по 3 компонента справа налево.
  2. Пропущенные биты заполняются ведущими нулями.
  3. Преобразуйте каждую группу, умножив цифру на 2n.

Точно так же надо действовать и с шестнадцатеричной системой, но надо разделить компонент на группы по 4 элемента.

Из 8-ой и 16-ой в 2-ю

В случае восьмеричной системы каждая цифра в числе преобразуется в 3-значный двоичный код путем деления на 2. Отсутствующие крайние цифры равны нулю.

Шестнадцатеричная система предусматривает преобразование каждой цифры в двоичную 4-компонентную. Сопровождается делением на 2. Недостающие крайние цифры равны нулю.

Древние непозиционные системы счисления

Исторической науке известны древние системы счисления, использующие различные знаки, символы и рисунки для обозначения числовых значений. Самыми известными являются:

  • Древнеегипетская система счисления
  • Вавилонская система счисления
  • Система счисления майя

Древнеегипетская система счисления

В древнеегипетской системе счисления специальные символы заменяли числа 1, 10, 100, 1000, 1000, и так далее, кратные десяти.

Рис. 2. Символы древнеегипетской системы счисления и их десятичные эквиваленты.

Числа записывались в виде комбинации таких символов, повторяющихся в зависимости от значения конкретного разряда не более девяти раз. Например, в числе 45 символ для обозначения 10 записывается четыре раза, а символ единицы, повторяется пять раз.

Вавилонская система счисления

Вавилонская система представления чисел использует для обозначения чисел знаки в виде вертикальных и горизонтальных насечек – клиньев. Такую систему написания знаков называют клинописью.

Единицы в древнем Вавилоне обозначали прямыми клиньями, десятки – лежащими, то есть горизонтальными. Прямым клином обозначается также число шестьдесят.

Вавилонскую систему записи числовых значений называют также шестидесятеричной. Принцип разделения числового пространства на группы по 60 единиц используется и в настоящее время для определения временных отрезков. Один час состоит из 60 минут, одна минута – из 60 секунд.

Вавилонская система представляет собой комбинированный вариант системы счисления, так как представление чисел от 1 до 60 подчинено непозиционному принципу, а числа свыше шестидесяти представляются с использованием позиционного подхода.

Например, число 34 в вавилонской системе записывается как последовательность из трех горизонтальных клиньев, за которыми следует четыре прямых клина. А число 84 будет начинаться с прямого клина, обозначающего 60, за которым следуют два лежащих клина и затем четыре прямых.

Система счисления майя

Для обозначения чисел в различных бытовых ситуациях Майя использовали непозиционную систему представления чисел, в которой записывались числа от 0 до 19 с помощью знаков, представляющих собой комбинации точек и горизонтально расположенных отрезков.

Рис. 3. Цифры народа цивилизации майя.

Например, цифра для обозначения числа 17 выглядит как две точки, расположенные над тремя горизонтальными черточками.

Что мы узнали?

Для представления чисел используются позиционные и непозиционные системы счисления. В непозиционных системах расположение знаков, составляющих числа не влияет на их числовые значения. Самой известной непозиционной системой является система римских цифр. Известные исторической науке системы записи чисел древних народов Египта, Вавилона, цивилизации Майя применяли непозиционный принцип представления чисел, используя различные знаки для обозначения числовых эквивалентов.

  1. /10

    Вопрос 1 из 10

    Для непозиционной системы счисления справедливо утверждение:

    • Основание системы счисления равно двум
    • Изменение положения символа в числе не влияет на его числовое значение
    • Если цифру в числе переместить из одного разряда в другой, ее количественное значение измениться
    • Выполнять умножение и сложение чисел в системе счисления можно поразрядно, записывая их столбиком, друг под другом.

Классификация позиционных систем

Двоичные

Двоичная система — система счисления, в которой в качестве базовых чисел выбираются степени числа два.

Чтобы не путать их с числами, записанными в десятичной системе счисления, справа внизу указывают основание системы счисления. Обычно число при этом заключают в скобки.

Двоичную систему использовали задолго до возникновения информационных технологий. Во втором тысячелетии до нашей эры народы Южной Америки кодировали двоичной системой свои записи, в том числе и не числовые. Узелок и ровный участок нити чередовались друг с другом.

В современной двоичной системе, на основе которой был создан телеграф, а позже — реле и переключатели, единица обозначает наличие сигнала, ноль — его отсутствие. Цифровые электронные схемы работают по тому же принципу. Также на нем основаны сигнальные системы, использующиеся до сих пор, например, азбука Морзе.

Восьмеричные

Когда-то два индейских племени решили, что им удобно при счете смотреть на восемь промежутков между пальцами, а не на сами пальцы. Восьмеричная система счисления отразилась в их языках, в которых только восемь слов, обозначающих цифры. В двадцатом веке, когда для написания программ требовалось зашифровывать все больше информации в двоичной системе и упростить вычисления для людей, придумали альтернативную систему, которая позволила сократить количество цифр в коде. Число восемь — это два в кубе, поэтому перевести записи из двоичной системы в восьмеричную и обратно проще, чем в десятичную.

Десятичные

Элементы числовой базы, или ключевые числа, в десятичной системе счисления представляют собой степени десяти: 10 = 10^1, 100 = 10^2, 1000 = 10^3. В системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число 10 — основание системы счисления. Цифры от 0 до 9 представляют собой коэффициенты разложения числа по степеням десяти.

Родиной десятичной системы счисления считается Индия, хотя еще в вавилонской цивилизации с ее шестидесятеричной системой использовались закодированные десятичные цифры, а инки в своей узелковой письменности кодировали информацию десятью цветами. Но именно в Индии начали строго соблюдать порядок разрядов числа при записи и ставить ноль, чтобы избежать путаницы. Примерно в середине VIII века эту систему стали использовать другие страны. В Европе она распространилась к XVI веку и была названа «арабской».

Шестнадцатеричные

Шестнадцатеричные системы, как и восьмеричные, появились для упрощения взаимодействия с компьютером. Кроме арабских цифр, в них используются еще и латинские буквы от А до F. В разных языках программирования для записи чисел в шестнадцатеричной системе разные правила, называемые синтаксисом.

Пятеричная

Система, связанная с количеством пальцев на одной руке, использовалась в Китае и у некоторых племен Африки. В китайском языке у иероглифов, обозначающих цифры от шести до девяти, был один и тот же знак в начале — сокращенное обозначение цифры пять. Для записи чисел в этой системе используются цифры 0, 1, 2, 3, 4.

Двенадцатеричная

Если большим пальцем руки сосчитать число фаланг на других пальцах этой руки, получится двенадцать. Группы по двенадцать предметов называли во многих европейских языках словами, схожими с русским словом «дюжина»: duodezim на латыни, douzaine на французском, dozzina на итальянском, dozen на английском. Римляне пользовались двенадцатеричными дробями, \frac1 они называли унцией.

В Европе счет дюжинами долгое время, вплоть до XVIII века, сохранялся наравне с десятеричной системой. Дюжина дюжин составляла гросс (от немецкого слова «большой»), дюжина гроссов — массу. Признаки влияния числа 12 заметны в англо-американской системе линейных мер, в которой 1 фут равен 12 дюймам, 1 дюйм — 12 линиям, 1 линия — 6 точкам.

Шестидесятеричная

Первой позиционной системой счисления считается шестидесятеричная система в Древнем Вавилоне. Ее основание до сих пор применяют для измерения времени. Система счисления времени — смешанная, но для перевода минут в секунды или часы потребуется именно шестидесятеричная система.

Для измерения углов и записи координат (широты, долготы) тоже используют эту систему, так как изначально астрономические координаты записывали в шестидесятеричных дробях. По аналогии с часом градус делят на шестьдесят минут, минуту — на шестьдесят секунд.

Двадцатеричная

Двадцатеричную систему называют вигезимальной. Эта система, как и десятеричная, связана с количеством пальцев, поэтому многие народы изобрели ее независимо друг от друга. Основание 20 сохранилось в лингвистической структуре их языков, именно на нем основана система счета в разговорной речи. Например, во французском языке «восемьдесят» состоит из слов «четыре» и «двадцать».

Примеры использования и значимость

Исторические примеры позиционных и непозиционных систем

Изучение исторических примеров позиционных систем например, Архимедова или Вавилонская, показывает, как при их помощи древние цивилизации достигали значительного прогресса в астрономии и математике. С другой стороны, римские цифры, представляющие собой классический пример непозиционной системы, до сих пор используются для некоторых традиционных целей, таких как часы.

Влияние на современную науку и технологии

Понимание и применение позиционных систем сыграли решающую роль в развитии таких областей, как компьютерная инженерия и цифровая связь. Непозиционные системы оказали влияние в области криптографии, где они используются для создания разнообразных шифров и кодов.

Двоичная

Двоичную систему счисления в основном используют устройства и компьютеры. Такое решение пришло из-за того, что 10-я требовала раньше огромных затрат. Это сказывалось на стоимости ЭВМ.

Пришлось создавать «урезанную» версию. Основание здесь – 2. Для записи используются символы:

  • 0;
  • 1.

Каждый разряд имеет только одно соответствующее значение. Пример 101. Это – десятичное 5. Для того, чтобы осуществить перевод из двоичной в 10-ю, требуется умножить цифру 2-го числа на 2. Возвести «двойку» в степень, равную разряду. Так 1012 будет:

  • 1*22;
  • 0*21;
  • 1*2.

Получится: 4+0+1=510.

Для работы с кодами ЭВМ хранит для каждой отдельной цифры триггер. Это – электронная схема, принимающая два состояния. Одно – соответствует «нулю», другое – «единице».

Для того, чтобы запомнить отдельное число, применяется регистр – группа триггеров, количество которых соответствует количество разрядов в двоичном числе. А их совокупность – это оперативная память. Число, которое содержится в регистре, носит название машинного слова. Для получения доступа их нумеруют. Номер – адрес ячейки.

Основные позиционные СС, правила перевода

Двоичная система счисления

Систему, на которой основывается работа компьютеров, придумал гениальный немецкий ученый Г.В. Лейбниц (еще до 19 века!). Он придумал и описал СС, в которой все вычисления проводятся при помощи двух простейших символов – 0 и 1.

Компьютер, как механическое устройство, получает команды в виде двоичной кодировки. Он не в силах понять сложные задания, человеческую речь, музыку или тысячи оттенков, а переводя/кодируя всю необходимую информацию при помощи 0 и 1 (сеть, отсутствие сети), можно передать ему любые команды или информацию. Естественно, такие задания выглядят как огромные массивы двух знаков.

Алгоритм перевода чисел из десятичной в двоичную систему:

  1. Деление на основу СС до тех пор, пока не останется в остатке значение меньше значения основы.
  2. Записать остатки, от последнего к первому.
  3. Первый ноль можно не писать.

111 0100 11002 

Этот порядок действия позволят переводить в любую позиционную СС. В данном случае, основа – 2, остаток < или равен =.

Обратный алгоритм перевода из двоичной в десятичную систему счисления:

Записать число развернуто, то есть, сколько сотен, десятков и единиц в нем, но учитывая основу – 2

Объяснение. Развернутая форма записи 579: 5*102+7*101+9*10= 57910.

Обычно мы пользуемся свернутой формой записи чисел, то есть без разбивки на разряды и умножения на основу.

  1. Умножить и суммировать полученные значения.

А чтобы было легче, пользуются готовой таблицей степеней 2.

Альтернативный способ преобразования для гуманитариев

Для начала нужно написать степени двойки, начиная с самой большой:

Далее нужно отнимать от числа максимальную степень двойки и напротив нее ставить 1, если есть в исходном варианте или 0, если его нет. Перевод числа 579

Обратно еще проще. Подсчитать количество знаков – это будет степень 2 в степени -1. И так далее. А проще при помощи той же таблицы:

Если же оно на 1 больше, то число будет начинаться и заканчиваться на 1, а внутри – сплошные 0.

Восьмеричная СС

Основой такой системы является 8, а числа восьмеричной системы 0-7. Данная система счисления является позиционной и целочисленной. Применяется в сферах, связанных с цифровыми технологиями, особенно в Linux-программном обеспечении (права доступа, исполнения).

Пример: Перевести 5798 из десятичной в восьмеричную систему счисления:

Обратный перевод из восьмеричной СС в десятичную:

11038 = 1∙83+1∙82+0∙81+3∙8 = 512+64+0+3 = 57910

Таблица степеней

Альтернативный вариант таблицы степеней 

Классификация позиционных систем

Двоичные

Определение

Двоичная система —  система счисления, в которой в качестве базовых чисел выбираются степени числа два.

Чтобы не путать их с числами, записанными в десятичной системе счисления, справа внизу указывают основание системы счисления. Обычно число при этом заключают в скобки.

Двоичную систему использовали задолго до возникновения информационных технологий. Во втором тысячелетии до нашей эры народы Южной Америки кодировали двоичной системой свои записи, в том числе и не числовые. Узелок и ровный участок нити чередовались друг с другом.

В современной двоичной системе, на основе которой был создан телеграф, а позже — реле и переключатели, единица обозначает наличие сигнала, ноль — его отсутствие. Цифровые электронные схемы работают по тому же принципу. Также на нем основаны сигнальные системы, использующиеся до сих пор, например, азбука Морзе.

Восьмеричные

Когда-то два индейских племени решили, что им удобно при счете смотреть на восемь промежутков между пальцами, а не на сами пальцы. Восьмеричная система счисления отразилась в их языках, в которых только восемь слов, обозначающих цифры.
В двадцатом веке, когда для написания программ требовалось зашифровывать все больше информации в двоичной системе и упростить вычисления для людей, придумали альтернативную систему, которая позволила сократить количество цифр в коде. Число восемь — это два в кубе, поэтому перевести записи из двоичной системы в восьмеричную и обратно проще, чем в десятичную.

Десятичные

Элементы числовой базы, или ключевые числа, в десятичной системе счисления представляют собой степени десяти: 10 = 10^1, 100 = 10^2, 1000 = 10^3.
В системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число 10 — основание системы счисления. Цифры от 0 до 9 представляют собой коэффициенты разложения числа по степеням десяти.

Родиной десятичной системы счисления считается Индия, хотя еще в вавилонской цивилизации с ее шестидесятеричной системой использовались закодированные десятичные цифры, а инки в своей узелковой письменности кодировали информацию десятью цветами. Но именно в Индии начали строго соблюдать порядок разрядов числа при записи и ставить ноль, чтобы избежать путаницы. Примерно в середине VIII века эту систему стали использовать другие страны. В Европе она распространилась к XVI веку и была названа «арабской».

Шестнадцатеричные

Шестнадцатеричные системы, как и восьмеричные, появились для упрощения взаимодействия с компьютером. Кроме арабских цифр, в них используются еще и латинские буквы от А до F. В разных языках программирования для записи чисел в шестнадцатеричной системе разные правила, называемые синтаксисом.

Пятеричная

Система, связанная с количеством пальцев на одной руке, использовалась в Китае и у некоторых племен Африки. В китайском языке у иероглифов, обозначающих цифры от шести до девяти, был один и тот же знак в начале — сокращенное обозначение цифры пять. Для записи чисел в этой системе используются цифры 0, 1, 2, 3, 4.

Двенадцатеричная

Если большим пальцем руки сосчитать число фаланг на других пальцах этой руки, получится двенадцать. Группы по двенадцать предметов называли во многих европейских языках словами, схожими с русским словом «дюжина»: duodezim на латыни, douzaine на французском, dozzina на итальянском, dozen на английском. Римляне пользовались двенадцатеричными дробями, \frac1{12} они называли унцией.

В Европе счет дюжинами долгое время, вплоть до XVIII века, сохранялся наравне с десятеричной системой. Дюжина дюжин составляла гросс (от немецкого слова «большой»), дюжина гроссов — массу. Признаки влияния числа 12 заметны в англо-американской системе линейных мер, в которой 1 фут равен 12 дюймам, 1 дюйм — 12 линиям, 1 линия — 6 точкам.

Шестидесятеричная

Первой позиционной системой счисления считается шестидесятеричная система в Древнем Вавилоне. Ее основание до сих пор применяют для измерения времени. Система счисления времени — смешанная, но для перевода минут в секунды или часы потребуется именно шестидесятеричная система.

Для измерения углов и записи координат (широты, долготы) тоже используют эту систему, так как изначально астрономические координаты записывали в шестидесятеричных дробях. По аналогии с часом градус делят на шестьдесят минут, минуту — на шестьдесят секунд.

Двадцатеричная

Двадцатеричную систему называют вигезимальной. Эта система, как и десятеричная, связана с количеством пальцев, поэтому многие народы изобрели ее независимо друг от друга. Основание 20 сохранилось в лингвистической структуре их языков, именно на нем основана система счета в разговорной речи. Например, во французском языке «восемьдесят» состоит из слов «четыре» и «двадцать».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Шампиньон.

Различия бледной поганки и шампиньона